Teddy: A Sketching Interface for 3D Freeform Design

SIGGRAPH 99 paper, by Takeo Igrashi, Satoshi Matsuoka, and Hidehiko Tanaka
Motivation

- Easy to use and intuitive toolkits that animators can create a model quickly.
- E.g., SKETCH by Robert Zeleznik et al. & this paper
Goals

• Construction of approximate polygonal surface models
• Users can draw gestural strokes to construct objects
• Check out their video online:
 http://www-ui.is.s.u-tokyo.ac.jp/~takeo/video/teddy.avi
Overview: Creating A New Object

- User draws silhouette – cannot self intersect
- Thick parts of silhouette are fat and narrow areas are skinny
Algorithm for Creating a New Object

• The Silhouette
 – User drawn silhouette converted to line segments
 – If open, end points are joined
 – Silhouette cannot itself intersect

- Inflate the polygon
 – Construct constrained Delaunay Triangulation
 – Find chordial Axis
 – Prune insignificant branches
 • Merge triangles
 • Compute pruned spine
 • Retriangulate
Algorithm for Creating a New Object

- Inflate the polygon (details next slide)
- Find chordial Axis
- Prune insignificant branches
 - Merge triangles
 - Compute pruned spine
 - Re-triangulate

a) initial 2D polygon
b) result of CDT
c) chordal axis

d) fan triangles
e) resulting spine
f) final triangulation
Algorithm for Creating a New Object

- Inflate the polygon (details next slide)
 Construct constrained Delaunay Triangulation
 - Delaunay triangulation: A triangulation such that the circumcircle of every triangle contains no other points
 - Constrained delaunay triangulation: a delaunay triangulation forced to contain edges
 - here the edges of the input silhouette

![Diagram showing Terminal, Sleeve, and Junction with external edges labeled and CDT result.](http://www.geoinformatik.uni-rostock.de/einzel.asp?ID=477)
Algorithm for Creating a New Object

• Finding the Chordial Axis (Spine)
 – If open, end points are joined
 – Silhouette cannot itself intersect
 – Find the chordial axis by connecting the midpoints of the internal edges
Algorithm for Creating a New Object

- Prune insignificant branches
 - Merge triangles
 - Compute pruned spine
 - Re-triangulate

![c) chordal axis](image)
![e) resulting spine](image)
Algorithm for Creating a New Object

- Prune insignificant branches
 - **Merge triangles**

 For each terminal triangle \(X \),

 1. \(C \): The semicircle on \(X \)’s interior edge

 \(T \): the triangle sharing \(X \)’s internal edge

 2. If all vertices of \(X \) are within \(C \), merge \(X \) and \(T \):

 \(X = X + T \)

 3. Else if \(X \) contains vertices not in \(C \), make a fan of triangles from interior edge midpoint. STOP.

 4. If \(T \) is a Junction triangle, make a fan of triangles from midpoint of \(T \). STOP.

 5. Goto step 1.

- Compute pruned spine
- Re-triangulate

CMSC 635 January 15, 2013 Quadric Error Metrics <#>/20

![Diagram](attachment:diagram.png)

a) start from T-triangle b) advance c) stop d) fan triangles e) advance to J-triangle
Algorithm for Creating a New Object

- Prune insignificant branches
 - Merge triangles
 - Compute pruned spine
 - Pruned spine is obtained by connected midpoints of sleeve and junction triangles’ internal edges
 - Re-triangulate
 - Divide remaining sleeve triangles at spine & re-triangulate resulting polygons

![Diagram showing steps d) fan triangles, e) resulting spine, f) final triangulation]
Algorithm for Creating a New Object

- Elevating the Spine
 - Elevate each spine vertex by the average distance between it and its connected external vertices
 - Convert all internal edges to quarter ovals
 - Sew neighboring elevated edges
Teddy: Painting on the Surface

- Convert input stroke to line segments
- For each line segment
 - Compute bounded plane containing segment and camera
 - Intersect plane with each polygon of surface (use closest)
 - Connect line segments on surface
- If line segments cannot be connected (i.e., painting across a fold), painting fails.

Figure 16: Construction of surface lines.
Interaction: Extrusion

- Base ring: closed polyline on mesh surface
- Normal: Best fit plane to the base ring
- Projective plane: plane through base ring center of gravity and parallel to the normal
- Project 2D extruding stroke onto plane
- Sweep base ring along extruding stroke such that
 - Base rings are almost perpendicular to the direction of the extruding stroke
 - Base rings are resized to fit extruding stroke
- Delete polygons underlying the base of the extrusion and sew extrusion to surface
- Same algorithm used for digging cavities

![Diagram](a) projection of the stroke b) sweep along the projected stroke

Figure 17: Extrusion algorithm.
Interaction: Cutting

- Based on painting algorithm
- For each line segment of cutting stroke
 - Project onto front and back facing polygons intersected by bounded plane
 - End points of projected segment are connected to create a planar polygon
- Splice planar polygons together
- Triangulate planar polygons
- Remove all polygons on surface to left of cutting stroke

Figure 20: Cutting.
Smoothing

- Change coordinate system so that the normal of base ring is parallel to the Z-axis.
- Project base ring into XY-plane and triangulate it.
- Determine Z-values for vertices of triangulated base ring.
 - For each vertex
 - For each edge opposite the vertex
 1. Consider plane parallel to the Z-axis through the vertex and the mid-point of the edge
 2. Choose Z-value so that the point lies on the Bezier curve that smoothly interpolates both ends of the ring on the plane
 - The final Z-value is the average of the Z-values across all edges.

![Smoothing Algorithm Diagram](image.png)

Figure 21: Smoothing algorithm.