Advanced Computer Graphics (Spring 2013)

Mesh representation, overview of mesh simplification

Many slides courtesy Szymon Rusinkiewicz

Mesh Data Structures

Desirable Characteristics 1

- Generality – from most general to least
 - Polygon soup
 - Only triangles
 - 2-manifold → ≤ 2 triangles per edge
 - Orientable → consistent CW / CCW winding
 - Closed → no boundary
- Compact storage

Desirable characteristics 2

- Efficient support for operations:
 - Given face, find its vertices
 - Given vertex, find faces touching it
 - Given face, find neighboring faces
 - Given vertex, find neighboring vertices
 - Given edge, find vertices and faces it touches
- These are adjacency operations important in mesh simplification, many other applications

Outline

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge

Overview of mesh decimation and simplification

Motivation

- A polygon mesh is a collection of triangles
- We want to do operations on these triangles
 - E.g. walk across the mesh for simplification
 - Display for rendering
 - Computational geometry
- Best representations (mesh data structures)?
 - Compactness
 - Generality
 - Simplicity for computations
 - Efficiency

Independent Faces

Faces list vertex coordinates
- Redundant vertices
- No topology information

Face Table
- F_0: (x_0, y_0, z_0), (x_1, y_1, z_1)
- F_1: (x_2, y_2, z_2), (x_3, y_3, z_3)
- F_2: (x_4, y_4, z_4), (x_5, y_5, z_5)
Indexed Face Set

- Faces list vertex references – “shared vertices”
- Commonly used (e.g. OFF file format itself)
- Augmented versions simple for mesh processing

<table>
<thead>
<tr>
<th>Vertex Table</th>
<th>Face Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0 (x0, y0)</td>
<td>F0 0, 1, 2</td>
</tr>
<tr>
<td>v1 (x1, y1)</td>
<td>Fj 1, 4, 2</td>
</tr>
<tr>
<td>v2 (x2, y2)</td>
<td>Fi 1, 3, 4</td>
</tr>
<tr>
<td>v3 (x3, y3)</td>
<td></td>
</tr>
</tbody>
</table>

Note: CCW ordering

Efficient Algorithm Design

- Can sometimes design algorithms to compensate for operations not supported by data structures
- Example: per-vertex normals
 - Average normal of faces touching each vertex
 - With indexed face set, vertex → face is O(n)
 - Naive algorithm for all vertices: O(n^2)
 - Can you think of an O(n) algorithm?

Outline

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge

Overview of mesh decimation and simplification

Full Adjacency Lists

- Store all vertex, face, and edge adjacencies

Edge Adjacency Table

<table>
<thead>
<tr>
<th>e0</th>
<th>v0</th>
<th>v1</th>
<th>v2</th>
<th>v3</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>v0</td>
<td>v2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e2</td>
<td>v0</td>
<td>v1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Face Adjacency Table

<table>
<thead>
<tr>
<th>F0</th>
<th>v0</th>
<th>v1</th>
<th>v2</th>
<th>v3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>v0</td>
<td>v1</td>
<td>v3</td>
<td>v2</td>
</tr>
<tr>
<td>F2</td>
<td>v0</td>
<td>v1</td>
<td>v2</td>
<td>v3</td>
</tr>
</tbody>
</table>

Vertex Adjacency Table

<table>
<thead>
<tr>
<th>v0</th>
<th>e0</th>
<th>e1</th>
<th>e2</th>
<th>e3</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>e0</td>
<td>e1</td>
<td>e2</td>
<td>e3</td>
</tr>
<tr>
<td>v2</td>
<td>e1</td>
<td>e2</td>
<td>e3</td>
<td>e0</td>
</tr>
<tr>
<td>v3</td>
<td>e2</td>
<td>e3</td>
<td>e0</td>
<td>e1</td>
</tr>
</tbody>
</table>
Garland and Heckbert claim they do this
- Easy to find stuff
- Issue is storage
- And updating everything once you do something like an edge collapse for mesh simplification
- I recommend you implement something simpler (like indexed face set plus vertex to face adjacency)

Some combinations only make sense for closed manifolds

Most data stored at edges
- Verts, faces point to one edge each
- Compact Storage
- Many operations efficient
- Allow one to walk around mesh
- Usually general for arbitrary polygons (not triangles)
- But implementations can be complex with special cases relative to simple indexed face set or partial adjacency table
Each edge stores 2 vertices, 2 faces, 4 edges – fixed size

- Enough information to completely “walk around” faces or vertices
- Think how to implement
 - Walking around vertex
 - Finding neighborhood of face
 - Other ops for simplification

Outline

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge

Overview of mesh decimation and simplification

Mesh Decimation

Multi-resolution hierarchies for efficient geometry processing and level of detail rendering

<table>
<thead>
<tr>
<th>Triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>41,855</td>
</tr>
<tr>
<td>27,870</td>
</tr>
<tr>
<td>20,922</td>
</tr>
<tr>
<td>12,939</td>
</tr>
<tr>
<td>8,395</td>
</tr>
<tr>
<td>4,166</td>
</tr>
</tbody>
</table>

Adapt to hardware capabilities

Oversampled 3D scan data
Mesh Decimation

- Reduce number of polygons
 - Less storage
 - Faster rendering
 - Simpler manipulation
- Desirable properties
 - Generality
 - Efficiency
 - Produces “good” approximation

Primitive Operations

Simplify model a bit at a time by removing a few faces (mesh simplification)
- Repeated to simplify whole mesh

Types of operations
- Vertex cluster
- Vertex remove
- Edge collapse (main operation used in assignment)

Vertex Cluster

- Method
 - Merge vertices based on proximity
 - Triangles with repeated vertices can collapse to edges or points
- Properties
 - General and robust
 - Can be unattractive if results in topology change

Vertex Clustering

- Cluster generation
 - Hierarchical approach
 - Top-down or bottom up
- Computing a representative
 - Average / median vertex position
 - Error quadrics
- Mesh generation
- Topology changes

Further reading: Model simplification using vertex clustering, Low and Tan, I3D, 1997

Vertex Remove

- Method
 - Remove vertex and adjacent faces
 - Fill hole with new triangles (reduction of 2)
- Properties
 - Requires manifold surface, preserves topology
 - Typically more attractive
 - Filling hole well not always easy
Vertex Removal
- Method
 - Merge two edge vertices to one
 - Delete degenerate triangles (triangle formed by three collinear points)
- Properties
 - Special case of vertex cluster
 - Allows smooth transition
 - Can change topology

Edge Collapse
- Method
 - Merge two edge vertices to one
 - Delete degenerate triangles (triangle formed by three collinear points)
- Properties
 - Special case of vertex cluster
 - Allows smooth transition
 - Can change topology

Half-edge collapse

Half-Edge Collapse

Mesh Decimation/Simplification
- Typical: greedy algorithm
 - Measure error of possible “simple” operations (primarily edge collapses)
 - Place operations in queue according to error
 - Perform operations in queue successively (depending on how much you want to simplify model)
 - After each operation, re-evaluate error metrics

Geometric Error Metrics
- Motivation
 - Promote accurate 3D shape preservation
 - Preserve screen-space silhouettes and pixel coverage
- Types
 - Vertex-Vertex Distance
 - Vertex-Plane Distance
 - Point-Surface Distance
 - Surface-Surface Distance
Vertex-Vertex Distance
- \(E = \max(|v3-v1|, |v3-v2|) \)
- Appropriate during topology changes
 - Rossignac and Borrel 93
 - Luebke and Erikson 97
- Loose for topology-preserving collapses

Vertex-Plane Distance
- Store set of planes with each vertex
- Error based on distance from vertex to planes
- When vertices are merged, merge sets
- Ronfard and Rossignac 96
- Store plane sets, compute max distance
- Error Quadrics – Garland and Heckbert 96
- Store quadric form, compute sum of squared distances

Point-Surface Distance
- For each original vertex, find closest point on simplified surface
- Compute sum of squared distances

Surface-Surface Distance
- Compute or approximate maximum distance between input and simplified surfaces
 - Tolerance Volumes - Guéziec 96
 - Simplification Envelopes - Cohen/Varshney 96
 - Hausdorff Distance - Klein 96
 - Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

Geometric Error Observations
- Vertex-vertex and vertex-plane distance
 - Fast
 - Low error in practice, but not guaranteed by metric
- Surface-surface distance
 - Required for guaranteed error bounds

Topology changes
- Merge vertices across non-edges
- Changes mesh topology
- Need spatial neighborhood information
- Generates non-manifold meshes
Mesh Simplification

- Advanced Considerations
 - Type of input mesh, Modifies topology, Continuous LOD, Speed vs. quality
 - Vertex clustering is fast but difficult to control simplified mesh that will leads to the previously mentioned errors

View-Dependent Simplification

- Simplify dynamically according to viewpoint
 - Visibility
 - Silhouettes
 - Lighting

Appearance Preserving

- 7,809 tris
 - 488 tris
 - 975 tris
 - 1,951 tris
 - 3,905 tris

Summary

- Many mesh data structures
 - Compact storage vs ease, efficiency of use
 - How fast and easy are key operations
- Mesh simplification
 - Reduce size of mesh in efficient quality-preserving way
 - Based on edge collapses mainly
- Choose appropriate mesh data structure
 - Efficient to update, edge-collapses are local
- Material covered in text
 - Classical approaches to simplification
 - Quadric metrics next week