Curves and Surfaces

To do
• Continue to work on ray programming assignment
• Start thinking about final project

Curved Surfaces
• Motivation
 – Exact boundary representation for some objects
 – More concise representation that polygonal mesh
 – Easier to model with and specify for many man-made objects and machine parts (started with car bodies)

Curve and surface Representations
• Curve representation
 – Function: $y = f(x)$
 – Implicit: $f(x, y) = 0$
 – Subdivision: (x, y) as limit of recursive process
 – Parametric: $x = f(t), y = g(t)$
• Curved surface representation
 – Function: $z = f(x, y)$
 – Implicit: $f(x, y, z) = 0$
 – Subdivision: (x, y, z) as limit of recursive process
 – Parametric: $x = f(s, t), y = g(s, t), z = h(s, t)$
Parametric Surfaces

- Boundary defined by parametric function
 - \(x = f(u, v) \)
 - \(y = f(u, v) \)
 - \(Z = f(u, v) \)
- Example (sphere):
 - \(X = \sin(\theta) \cos(\phi) \)
 - \(Y = \sin(\theta) \sin(\phi) \)
 - \(Z = \cos(\theta) \)

Parametric Representation

- One function vs. many (defined piecewise)
- Continuity
- A parametric polynomial curve of order \(n \):
 \[
 x(u) = \sum_{i=0}^{n} a_i u^i \\
 y(u) = \sum_{i=0}^{n} b_i u^i
 \]
- Advantages of polynomial curves
 - Easy to compute
 - Infinitely differentiable everywhere

Spline Constructions

- Cubic spline is the most common form
- Common constructions
 - Bezier: 4 control points
 - B-splines: approximating \(C^2 \), local control
 - Hermite: 2 points, 2 normals
 - Natural splines: interpolating, \(C^2 \), no local control
 - Catmull-Rom: interpolating, \(C^1 \), local control

Bezier Curve

- Motivation: Draw a smooth intuitive curve (or surface) given a few key user-specified control points

- Properties:
 - Interpolates is tangent to end points
 - Curve within convex hull of control polygon
Linear Bezier Curve
• Just a simple linear combination or interpolation (easy to code up, very numerically stable)

\[F(u) = (1-u) P_0 + u P_1 \]

deCastlja: Quadratic Bezier Curve
Quadratic Degree 2, Order 3
\[F(0) = P_0, F(1) = P_2 \]
\[F(u) = (1-u)^2 P_0 + 2u(1-u) P_1 + u^2 P_2 \]

Geometric Interpretation: Quadratic

Geometric Interpolation: Cubic
Summary: deCasteljau Algorithm

- A recursive implementation of curves at different orders

Linear
Degree 1, Order 2
\[F(0) = P_0, \quad F(1) = P_1 \]
\[F(u) = (1-u)P_0 + uP_1 \]

Quadratic
Degree 2, Order 3
\[F(0) = P_0, \quad F(1) = P_2 \]
\[F(u) = (1-u)^2P_0 + 2u(1-u)P_1 + u^2P_2 \]

Cubic
Degree 3, Order 4
\[F(0) = P_0, \quad F(1) = P_3 \]
\[F(u) = (1-u)^3P_0 + 3u(1-u)^2P_1 + 3u^2(1-u)P_2 + u^3P_3 \]

Bezier: disadvantages

- Single piece, no local control (move a control point, whole curve changes)
- Complex shapes: can be very high degree, difficult to deal with
- In practice: combine many Bezier curve segments
 - But only position continuous at the joint points since Bezier curves interpolate end-points (which match at segment boundaries)
 - Unpleasant derivative (slope) discontinuities at end-points

Piecewise polynomial curves

- Ideas:
 - Use different polynomial functions for different parts of the curve
- Advantage:
 - Flexibility
 - Local control
- Issue
 - Smoothness at joints (G: geometry continuity; C: derivative continuity)
Continuity

- **C^0 continuity**: Adjacent curves share the same endpoints:
 \[Q_i(1) = Q_{i+1}(0) \]

- **C^1 continuity**: Adjacent curves share the same endpoints and same derivative:
 \[Q_i'(1) = Q_{i+1}'(0) \]

- **C^2 continuity**: Must have C^1 continuity, and the same second derivatives:
 \[Q_i''(1) = Q_{i+1}''(0) \]

Splines

- More useful form of representation compared to the Bezier curve
- How they work: Parametric curves governed by control points
- Mathematically: Several representations to choose from. More complicated than vertex lists. See chapter 22 of the book for more information.

 - Simple parametric representation:

 - Advantage: Smooth with just a few control points
 - Disadvantage: Can be hard to control
 - Uses:
 - representation of smooth shapes. Either as outlines in 2D or with Patches or Subdivision Surfaces in 3D
 - animation Paths
 - approximation of truncated Gaussian Filters

A Simple Animation Example

- Problem: create a car animation that is driving up along the y-axis with velocity \([0, 3]\), and arrive at the point \((0, 4)\) at time \(t=0\). Animate its motion as it turns and slows down so that at time \(t=1\), it is at position \((2, 5)\) with velocity \([2, 0]\).

 - Solution
 - First step: generate a mathematical description.
 - Second step: choose the curve representation
 - Hermite curve: \(r(t) = GMT(t) \)

 - Exercise: Bezier curve representation?
Catmull Rom Spline
- Can be used to solve the following problem.

 ![Figure 22.4: A sequence of points and vectors; we want a curve that passes through the points with the given vectors as velocities.](image)

- Solution:
 - Math representation
 - Curve construction
 - Catmull Rom spline to construct the vectors from the two or three neighbors

Take home exercise: read chap 22 in the book and construct the curve and the B-spline using the Chen code.

Surfaces
- Curves -> Surfaces
- Bezier patch:
 - 16 points
 - Check out the Chen code for surface construction

Subdivision curves
- A simple idea
 - Using the midpoint of the edge from one point to the next, replace that point with a new one to create a new polygon to construct a new curve.
 - Problem with this?

- Further readings:
 - Laplacian interpolation and smoothing (Gabriel Taubin @ Brown)
 - Joe Warren@ Rice (on mesh)