
Basic Stuff
� Due to layout rules Haskell syntax is rather elegant and generally eazy to understand. The import

thing is to indent consistently, becuase, unlike other languages, indentation matters. 

� Like ML Functions can either be defined in a curried form: 
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Or an un-curried form using turples, which work the same way as they do in ML. 
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However, unlike ML, functions are generally defined in the un-curried form. 

� Functions can also be defined without a name 
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� Haskell also has infix operators which are really just functions. 

Which can be partly applied just like curied functions using a compact syntax. 
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It is also possable to define your own infix operators: 
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Which is definding the "min" operator. The expression "20 <? 30 <? 10" will then evaluate to 10
as expected. 

� Pattens and wildcards behave the same way they do in ML. 
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However, Haskell also has pattern guards which are an elegant form of "if then else". 
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But it is not always convenient to have to define a separate function every time a patern
match/guard is needed. For this, haskell provided the case statement. 
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Haskell even has the "if then else" statment, however it is really just a shorthand for: 

L'MON�P�QOP�R�SOTGUOV
W�X'Y P Z�T�Q W0[ P�\]L'^�M Y N�P0T
V'M'^ON�PGZ�T�QOPO^�N0PGL'^�M Y N�P0T

_ A let clause can be used to define bindings much like in ML. 

^0P W�` a M�b�c
VKR aed R
f `�g�h�`

i \]V�L+fIV�j

In the contex of functions and case expressions, a where clause can also be used which is similar
to let except that the bindings come after the expression. 

V Y \�R a V�L+fIV�j
k [ P X P ` a M�b�c

VKR aed R
f `�g�h�`

A where cause, unlike the let clause, can also be used to scope bindings over several guarded
equations: 

VKR ` l ` T
m a n'n�n
l `
a�a m a n'n�n
l ` Q
m a n'n�n

k [ P X P�m a R�bKR


