
Basic Stuff
� Due to layout rules Haskell syntax is rather elegant and generally eazy to understand. The import

thing is to indent consistently, becuase, unlike other languages, indentation matters.

� Like ML Functions can either be defined in a curried form:

���������
	��
���

Or an un-curried form using turples, which work the same way as they do in ML.

���������������	��
���

However, unlike ML, functions are generally defined in the un-curried form.

� Functions can also be defined without a name

� ���������
���

� Haskell also has infix operators which are really just functions.

Which can be partly applied just like curied functions using a compact syntax.

�����	 � ���������
���
���� ��	 � �����!�����

It is also possable to define your own infix operators:

"$#&%'" �)(+*&,���� "$#&%'" ���-('. %0/�12"�# � "�#�3

�
*&,4�657�
*�� 	��
598 /0: .�;�< "�= .�	��

Which is definding the "min" operator. The expression "20 <? 30 <? 10" will then evaluate to 10
as expected.

� Pattens and wildcards behave the same way they do in ML.

(0. #?>$@ 	�A
(0. # CBED�� = ��	GFH�I(0. # � =

However, Haskell also has pattern guards which are an elegant form of "if then else".

=0"�30# �65 �
� A 	 F
5 �
	�	�A 	 A
5 �
* A 	 ��F

But it is not always convenient to have to define a separate function every time a patern
match/guard is needed. For this, haskell provided the case statement.

(0. # (=�/ 	IJ�� = .G(=�/ 8 %
>$@ ����A
CBED�� = �K���GFH�I('. # � =

� 1)= �
	IJ�� = .��I8 %
�657�
��	�AI�����

57�
* AI���I�$�

Haskell even has the "if then else" statment, however it is really just a shorthand for:

L'MON�P�QOP�R�SOTGUOV
W�X'Y P Z�T�Q W0[P�\]L'^�M Y N�P0T
V'M'^ON�PGZ�T�QOPO^�N0PGL'^�M Y N�P0T

_ A let clause can be used to define bindings much like in ML.

^0P W�` a M�b�c
VKR aed R
f `�g�h�`

i \]V�L+fIV�j

In the contex of functions and case expressions, a where clause can also be used which is similar
to let except that the bindings come after the expression.

V Y \�R a V�L+fIV�j
k [P X P ` a M�b�c

VKR aed R
f `�g�h�`

A where cause, unlike the let clause, can also be used to scope bindings over several guarded
equations:

VKR ` l ` T
m a n'n�n
l `
a�a m a n'n�n
l ` Q
m a n'n�n

k [P X P�m a R�bKR

