
Ch 11

• Distributed Scheduling
– Resource management component of a system which

moves jobs around the processors to balance load and
maximize overall performance.

– Typically makes sense in LAN level distributed
systems due to latency concerns.

– Needed because of uneven distribution of tasks on
individual processors

• Can be due to several reasons.
• Can even make sense for homogeneous systems with (on

average) even loads.



• How does one characterize
– Performance : average response time

– Load:
• It has been shown that queue lengths for resources (e.g. CPUs)

can be a good indicator.

• How does one handle the delay of transfer when systems are
unevenly loaded and we seek to rectify that ?

– Timeouts, holddowns

• Queue length not very appropriate for (nor correlated with)
CPU utilization for some tasks (e.g. interactive).



• Load balancing approaches may be
– Static: Decisions are “hard wired” a-priori into the

system based on designers understanding.
– Dynamic: Maintain state information for the system and

make decisions based on them. Better than static, but
have more overhead.

– Adaptive: A subtype of dynamic, they can change the
parameters they analyze based on system load.

• Load balancing vs. Load sharing
– Balancing typically involves more transfers. However,

sharing algorithms that transfer in anticipation can also
cause more transfers.



• Transfers may be preemptive or non-preemptive
– Preemptive transfers involve transferring execution state as well as

the task. Non-preemptive transfers are essentially “placements”

• Load Distribution System Components
– Transfer policy: Which node should send, who should receive

(threshold based approaches are common)
– Selection policy: Which task should be moved (new tasks, location

independent tasks, long running tasks …)
– Location Policy: Finding a receiver for a task. Typical approaches

are polling or broadcast.
– Information Policy

• Demand driven, Periodic, or State Change driven



• Stability in a load sharing system
– Queuing Theoretic: When total work arrival (tasks +

load sharing overhead) is greater than rate at which
CPU can work. Alternatively, look at the effectiveness
of the algorithm.

– Algorithmic : Does the algorithm lead to thrashing ?


