Ch 10

- Shared memory via message passing
- Problems
 - Explicit user action needed
 - Address spaces are distinct
 - Small Granularity of Transfer
- Distributed Shared memory approach can help with these. Also, unlike tightly coupled multiprocessors
 - Cheaper to build using COTS
 - Memory pooled together is significant than local workstation memory
 - More scalable since data bus is not a bottleneck
 - SMM based programs can be easily ported

Implementation Approaches

- Central Server Based
 - A central server maintains all shared data. Provided to processors using request/response model with timeouts.
 - Problem: Scalability
 - Solution: Partition data, allocate each partition to a processor and have it coordinate requests for that partition.
 - Need a "mapping function" to map VM address to corresponding processor.

- Migration Algorithm
 - Instead of sending request to data, send data to request
 - Send a "larger" block of data than needed
 - Locality of reference
 - Access is serialized
 - Can lead to thrashing
 - Avoid by using hold downs
 - Can allow for integratioon with local VM mechanisms
 - Need to have conforming page sizes in VM and DSM.
 - How do you locate a block
 - Centralized mapping server
 - Hints
 - Broadcast based discovery

- Read Replication
 - Enhance basic migration by allowing multiple read copies and one write copy.
 - Invalidation on read ?
 - Useful when read/write >> 1
- Full Replication
 - Allow multiple readers and writers
 - Consistency ?
 - Use a sequencer
 - Process in sequence order