Chandy-Misra- Haas

— Edge chasing algorithm based on the AND mode!.

— A process Pj is dependent on PK if there is a sequence
M, Pil....Pin,Pk such that all process but Pk are
blocked, and each process except P has something that
IS needed by its predecessor.

» Locally dependent

— If Pi islocally dependent on itself, then we have a

deadlock. Otherwise

» Forall P}, Pk such that Pi locally dependson Pj and P} is
waiting(not locally) on Pk, send probe(i,j,k) to Pk.

— On receiving probe(i,},k)
 If (Pkisdeadlocked && ! dependent, (i) & & Pk has not
replied to all requests of Pj)
— Dependent, (i) = true.
— If (k==1i)
» Then Pi isdeadlocked

» Else Foral Pm, Pn such that Pk locally depends on Pm and Pm is dependent
(not locally) on Pn, send probe(i,m,n) to Pk.

— Sends 1 proble message on each edge of WFG, so m(n-
1)/2 messages for a deadlock with m processes over n
sites. Size isfixed, and detection timeislinear in
number of sites

Diffusion Based Algorithm

— Works for OR request model
— Initiation:
» A blocked processi sends query(i,i,j) to all Pj inits dependent
set; num(i) = [DSI|, wait(i) = true;
— When ablocked process Pk recvs query (i,],k)
 |f thisisengaging query, send query(i,k,m) to all processesin
Its dependent set, and set num, (i) and wait, (i)
» Elseif wait,(i) then send reply(i,k,))
— When Pk gets reply(i,j k)
o If wait,(i)

— Decrement num,(i), if it becomes O then

» |f k ==1 then deadlock else reply(i,k,m) to the process which sent the
engaging query.

Heirarchical Algorithms

e Menhasce-Muntz

» Resources are managed by nodes that form the “leaves’ of a
tree. They maintain TWF/WFGs corresponding to the
resources they manage.

o Several |leaf controllers have asingle parent, and so onin atree
fashion. Each non-leaf controller maintains WFG which is
union of child WFGs. Changes are propagated upwards, and
deadlocks detected on the way

e Hierarchical Ho-Ramamoorthy

o Sites split into digoint clusters.

e Each cluster has its own control site. Thereis aso a central
control site.

| Ssues

— Formal methods to prove correctness

— Performance metrics
* No of messages ? Message size? Time to detect ? Storage
overhead ? Computation overhead ?
— Resolution — basically aborting a process

» How does a process know which others are involved in a
deadlock ?

» Can two process detect the same deadlock simultaneously ?
o UsePriorities!
 Rollback — release resources, clean up graph

— Phantom Deadlocks.

