
Maekawa’s Algo.
– Each site’s request set is constructed so that

• Intersection of request set for any pair of sites is not null

• Each site is in its own request set

• The request set size is K for any site.

• Each site is contained in K sets (K = sqrt(N))

– To request
• Site Si sends REQ(i) to all sites in its request set.

• On receiving the request, Sj will send REPLY(j) if it hasn’t sent a
reply to anyone since it got the last release. Otherwise hold.

– To Execute CS
• When you get all Replies

– To Release CS
• Send Release(i) to all sites in request set.

• When Sj gets release message, it sends reply to next waiting request.

– Need 3*sqrt(N) messages, 2*T synch. delay.

– Problem – deadlock can occur
• Imagine a situation with three sites each requesting CS.

– Solution – prioritize request using timestamps and do
some extra processing.

• Basically, eliminate circular wait. Site will send a failure
message if it can’t honor your request.

• If a site is locked, but receives a request from a site with higher
priority, it “inquires” from the locking site to see if the lock
can be released.

• Message traffic now 5*sqrt(N)

Token Based
– Suzuki Kasami Broadcast Algorithm:

• Basically, need a token to get into CS. Site possesing the token can get into CS
repeatedly. RN is an array of integers denoting the largest number in request
sequence from a site. The token itself has an array LN containing sequence
number of most recently executed request and a queue Q of requesting sites.

– Request
• If requesting site does not have token, it increments RNi[i] and sends

REQ(i, RNi[i]) to everyone else. When Sj receives this, it updates
RNj[i]. If it has idle token it sends it to Si

– CS is executed when token is received

– Release
• Set LN[i] to RNi[i]. If RNi[j] = LN[j]+1, then Sj is appended to token

Q

• If token queue is nonempty, delete top entry and send token to that
site. This makes it “non-symmetric”

– Messages is 0 or N, Snych. delay is 0 or T.

Raymond’s Tree Based Algo.
– The site with the token is the root of a tree. Each node has a variable

called holder pointing to parent. Each node also has a r-q that contains
requests for tokens from children.

– Request
• To request, send request to parent if your r_q is empty and add yourself to the

r_q
• When you get a request, add to r_q and forward to parent if you have not sent

a previous request.
• When root site gets request, it sends token to requesting site and sets holder to

point to that site.
• When site gets a token, it deletes top entry from r_q, sends token and points

holder. If r_q is nonempty, it sends request to holder.

– Execute
• When get the token and your request at top of r_q

– Release
• If r_q is nonempty, delete top entry , send token,point holder. If r_q still

nonempty, send request to holder.

– Message complexity is O(logN), Synch. Delay is (T log N) /2

• Do Section 6.14

