
Ch5

– In a distributed system, a site can either be requesting
CS execution, executing CS, or none of the above.

– Requirements for solutions:
• Deadlock free, starvation free, Fair, Fault tolerant

– Metrics of performance (loading conditions)
• # of messages needed for CS
• Synch. Delay – time between one site leaving CS and another

entering.
• Response time – Time interval between CS request and end of

CS
• Throughput: rate at which system executes CS.

– 1 / (snych. delay + CS execution time)

Solutions
– Centralized approach: Make a single site responsible

for permissions.
• Needs only 3 messages / CS (which 3 ?)
• Single point of failure, load on central site, 2T synch. Delay

– Lamports algorithm (non token based, FIFO delivery)
• When Si needs CS, it sends REQ(tsi, i) to all sites in its request

set., and places it in its request queue. A site Sj which receives
this places it in its own queue, and sends a timestamped
REPLY message

• Si can enter CS when
– Its request is as the top of the queue
– It has a reply from all sites it sent a message to with timestamp >

timestamp of request

• Upon exiting CS, removes its request, and sends a release
message to all sites. Each receiving site dequeues the request
as well

Does it work ?

– Can Prove by contradiction
• Basically this means that a process entered CS even though a request

from another process with lower timestamp was in its queue.

– Requires 3(n-1) messages / CS, sd is T

– Improvement – Ricart-Agrawala Algorithm
• A request is sent just as in Lamport’s algo.

• On receiving a request, a reply is sent if this site is neither executing
its CS nor requesting it. Otherwise, timestamps are compared and a
reply sent if the received tstamp is lower than the local tstamp.
Otherwise defer.

• Enter CS when reply received from all.

• Upon exiting CS, send replies to defered sites.

– Note that once I have clearance to go into CS, I can do so many
times as long as I don’t send back reply.

