
Other Synchrnization Problems

• Dining Philosophers

• Producer Consumer

• Readers Writers
– reader’s priority, writer’s priority

Readers/Writers with R priority

• Reader
 P(mutex)

 if (nr == 0) {

 nr++; P(notaccessed);

 } else

 nr++;

 V(mutex);

// Read Operations

 P(mutex);

 nr --;

 if (nr == 0) V(notaccessed);

 V(mutex);

• Writer
 P(exclw);

 P(notaccessed);

//Write Operations

 V(notaccesed);

 P(exclw);

Serializers

– Monitor Problems
• If monitor encapsulates resource, then concurrency is reduced even

where it is possible

• If resource is outside, then rouge processes can bypass the monitor.

– Serializers try to avoid this:
• They are still an ADT with defined operations that encapsulate data,

and enforce mutual exclusion.

• Procedures ma have “hollow” regions where they may allow other
processes to access the serializer.

– join-crowd (crowdid) then body end

– enque (prio,qname) until (condition)

• all events that gain and release the serializer are totally ordered.

Serializer to solve
Readers/Writers

• Read
Enque (rq) until empty(wcrowd)

Joincrowd(rc) then

 //Read operation

end

• Write
Enque (wq) until (empty(wc) && empty(rc) && empty(rq))

Joincrowd (wc) then

//Write Operation

end

Path Expressions

– Defines possible “valid” execution histories of the
operations

• Sequencing: a;b – a precedes b, no concurrency.

• Selection: a+b – either a or b is done, but not both and in any
order.

• Concurrency: {a} – any number of instances of a can be done
at the same time.

– Path {read} + write end gives a weak reader’s priority
solution.

CSP

– P2?v
• Get the value of v from P2 as an input

– P1!10
• Output value 10 to P1

– The input and output are synchronized if they name each other as
source/destination, and the types match

– G-> CL – execute commands in list CL if guard G is true.
– Alternative command – execute one of the choices where is guard

is true.
• G1 -> CL1 o G2 -> CL2 … o … Gn -> CLn

– Repetitive Command *[Alternative] – repeat until all guards are
false.

