Other Synchrnization Problems

Dining Philosophers
Producer Consumer

Readers Writers
— reader’ s priority, writer’ s priority

Readers/Writers with R priority

* Reader o Writer
P(mutex) P(exclw);
If (nr ==0){ P(notaccessed);
nr++; P(notaccessed);
} else [/\Write Operations
nr++; V (notaccesed);
V (mutex); P(exclw);
I/l Read Operations
P(mutex);
nr--;

iIf (nr == 0) V(notaccessed);
V (mutex);

Serializers

— Monitor Problems

 |f monitor encapsulates resource, then concurrency is reduced even
where it is possible

* |f resourceis outside, then rouge processes can bypass the monitor.
— Seridlizerstry to avoid this:

 They are still an ADT with defined operations that encapsulate data,
and enforce mutual exclusion.

» Procedures mahave “hollow” regions where they may allow other
processes to access the serializer.
— join-crowd (crowdid) then body end
— enque (prio,gname) until (condition)

 all eventsthat gain and release the serializer are totally ordered.

Seriaizer to solve
Readers/Writers

 Read

Enque (rg) until empty(wcrowd)
Joincrowd(rc) then

//Read operation
end

 Write
Enque (wq) until (empty(wc) & & empty(rc) && empty(rq))
Joincrowd (wc) then
[/\Write Operation
end

Path Expressions

— Defines possible “valid” execution histories of the
operations
» Sequencing: a;b —aprecedes b, no concurrency.

» Selection: atb — either aor b isdone, but not both and in any
order.

« Concurrency: {a} —any number of instances of a can be done
at the same time.
— Path {read} + write end gives aweak reader’s priority
solution.

CSP

P2V

» Get the value of v from P2 as an input
P1!10

e Output value 10 to P1

The input and output are synchronized if they name each other as
source/destination, and the types match

G-> CL —execute commandsin list CL if guard G istrue.

Alternative command — execute one of the choices where is guard
IStrue.

e« G1->CL10G2->CL2...0...Gn->CLn

Repetitive Command *[Alternative] — repeat until all guards are
false.

