Chapter 5
Limitations of a Distr. System

• Lack of global clock
 • common clock? Synchronized clocks?

• Absence of shared memory
 – cannot obtain a “coherent” view of “global” state
 – coherence ==> state observations made at the same time.
Temporal fundamentals

– Happened before relation (-->)
 • a --> b iff
 – a occurred before b in the same process
 – a is the event of sending a message in a process and b is the
 event of receiving the same message by another process
 • --> is transitive
 • a can causally affect b if a --> b
 • if ! ((a --> b) and (b --> a)) then a || b (concurrent). a and b do
 not have a causal relationship.
Lamport’s Logical Clocks

– Consider a “clock” C_i associated with process P_i. It is simply a process which assigns a number $C_i(a)$ to any event a in the process such that $C(a) < C(b)$ if $a \rightarrow b$
 • $C_i(a) < C_i(b)$ if a and b in the same process and $a \rightarrow b$
 • $C_i(a) < C_j(b)$ if a is send(m) in P_i and b is recv(m) in P_j

– To make the above true
 • C_i should monotonically increase between successive events within a process ($C_i = C_i + d$)
 • every message sent is stamped with the C_i of the sending process. On receipt, the receiver sets its C_j to the greater of its present value or the received timestamp ($\max(C_j, tstamp+d)$)

– This can be thought of as “virtual” time, but it moves only in response to events.
Limitations

– Since each clock can “independently” advance, we cannot in general infer happened before, and hence causality from clock value relations