
Ch4: Distributed Systems
Architectures

• Typically, system with several interconnected computers
that do not share clock or memory.

• Motivation: tie together multiple independent computers
over the network to

• share resources, enhance performance, improve
reliability/availability, provide expandability.

• One possible classification of architecture
– several “minicomputers” (machines with CPU/user < 1)

– several hundred / thousand “workstations” (CPU/user ~ 1)

– Processor pool (CPU/user > 1)
• user typically has a dedicated CPU as well.

• What is an OS
– An interface between hardware and user processes that provides an

abstraction of the machine and manages its resources.

• What is a Distributed OS
– the same, except for distributed systems

– aims at transparency of distribution and presents a virtual
uniprocessor to the user.

– according to some, the holy grail is to create a “metacomputer” and
a “Problem Solving Environment”

• The user sees a single machine that automagically provides enough
resources to do the task. The task can range from simple hello world
programs to complex calculations.

Issues in Distributed OS
• Global “state” is not known

• due to lack of shared memory and clock, unreliable message
transmission.

• Need decentralized controls

• temporal order of events ?

• Naming
• how should an object be identified ?

– Transparent ? Translucent ? Explicit ?

– URIs, URNs, URLs

• what if the object is replicated

• Scalability
• system should continue to work efficiently as resources are added

– consider a system that resolves IP addresses using broadcast

• Compatibility / Interoperability
• binary level, execution level or protocol level

• homogeneous vs heterogeneous systems

• Process Synchronization
• mutual exclusion problem w/o shared memory

• Resource Management
• how do you get data to the location of the computation

– distributed filesystem ? distributed shared memory ?

• how do you migrate a computation (remote evaluation)
– RPC ? Client-Server ?

• how do you migrate running processes (code on demand, mobile
objects/agents)

• Security
• authentication and authorization in a distributed system

Structure of Distributed OS
• Monolithic kernel

• a (large) single entity that provides all the services of the distributed
OS

• may not be a good idea since “computer configurations” will vary
– do you need to load disk drivers on a diskless client ?

• Collective kernel
• base OS functionality is in a relatively small microkernel. All other

OS services are processes that run on top.

• Microkernel will run on all machines

• OO approach
• same as collective kernel, but OS services are implemented as objects

• can provide a more structured approach than collective kernel

Communication
• Review Section 4.6 yourself.

• Message Passing Model
• send and receive type primitives

• can be blocking(reliable, unreliable) or non-blocking

• use of buffers

• synchronous vs asynchronous

Millennium Project
• Work at Microsoft Research(paper by Bolosky et al.)

• Features
– seamless distribution, worldwide scalability, fault tolerance, self-

tuning, self configuring, secure, resource control

• Principles
– aggressive abstraction, storage irrelevance, location irrelevance,

JIT binding, introspection.

