A Logical Interpretation of RDF

Wolfram Conen Reinhold Klapsing
XONAR IT and Information Systems and Software Techniques
Velbert, Germany U Essen, D-45117 Essen, Germany
Conen@gmx.de Reinhold.Klapsing @uni-essen.de

Discussion Paper —-- Version: 1.2, 11-October-2000

Preface — A Note to the Reader: This is a step towards a logic-based formalization of RDF. It grew
out of the necessity to precisely capture the semantics of RDF schemata while developing an RDF-
based modeling framework for web applications (XWMF). The rules and facts that are described in the
following allow to validate RDF triple sets. This in itself is not very exciting (VRP could be used instead).
It becomes, however, relevant, if schema constructs are required that restrict, modify or extend the initial
semantics, as, for example, monotone inheritance or typed containers. In such cases, rules that allow a
precise interpretation of introduced schema constructs can be used to extend the basic rule set provided
here. If the rules are themself given as XML/RDF, this can be a natural extension of the preciseness of
the semantic expressibility of RDF schema definitions, ie. each RDF schema definition (syntax) may
be accompanied by a document defining its semantics “logically”. Here, this starts to become pretty
interesting. It would, however, require to extend parsers with a logic inference engine (e.g., as has been
done with SiLRI'). Some more remarks on our philosophy: we tried to retain as much of the RDF “spirit”
as possible. We avoided, for example, to introduce new meta constructs etc. We designed the rules in a
way such that violations of constraints are explicitly detected (this avoids to leave the knowledge base
in an inconsistent state as it may happen if negated facts would be asserted). In this way, the violation
predicates can be queried and appropriate actions can be determined by the interpreting application.
We did not “resolve any ambiguities” (someone said that we should have made more decisions), simply
because we haven’t found ambiguities in the strict sense. Instead, we tried to point out where problems in
applying the rules may occur. The rules make use of negations — but, on the knowledge level (that is: we
interpret the triples by making certain relationships explicit, such as the instanceOf predicate), everything
is stratified (in contrary to the statement that due to the triple nature of RDF statements, no reasonable
stratification can be found — this is true only on the representation level). This is nice, because a natural
model-theoretic interpretation of the rules exist. The rules and facts can easily be fed into a datalog
interpreter (e.g. SiLRI). Inference engines based on SLD resolution may have some problems with the
subPropertyOf rules (not a problem of the rules but of top-down/depth-first inference mechanisms). One
more goodie needs to be mentioned: it is easy to query the triples (no specific query language is needed),
because it’s logic (datalog — relational algebra — SQL 3). However, the “content” of an RDF instance
is, in this simple approach, embedded into the triple predicate statement. This may render querying a
little bit tedious. It may turn out to be “nicer” (in what sense soever) to transform the RDF predicates
into knowledge base predicates (see, for example, the F-Logic encoding of triples in SiLRi). We hope,
however, that the rule set below may already be a step towards improved semantic interoperability (it is
explicit, machine-readable, uses a well-known formalism and the rules can be transmitted to any client
that can make use of it).

We hope for lively discussions — thank you in advance!

"Which is a nice tool that is - in the version that we have available - unfortunately not completely free from bugs

A Logical Interpretation of RDF

Abstract: The Resource Description Framework (RDF) is intended to be used to capture and express the
conceptual structure of information offered in the Web. Interoperability is considered to be an important
enabler of future web applications. While XML supports syntactic interoperability, RDF is aimed at
semantic interoperability. Interoperability is only given if different users/agents interpret an RDF data
model in the same way. Important aspects of the RDF model are, however, expressed in prose which
may lead to misunderstandings. To avoid this, capturing the intended semantics of RDF in first-order
logic might be a valuable contribution and may provide RDF with a formalization allowing its full ex-
ploitation as a key ingredient of the evolving Semantic Web. This paper seeks to express the concepts
and constraints of the RDF model in first-order logic.

Keywords: RDF, First-Order Logic, semantic networks, semantic interoperability

1 Introduction

The Resource Description Framework [6, 2] is a basis for processing Web metadata. The used metadata
format should allow to reason about data. The World Wide Web Consortium (W3C) intends RDF to
be used in a variety of application areas; for example: to describe the content and content relationships
available at a particular Web site or page, to facilitate knowledge sharing and exchange by intelligent
software agents, to describe collections of pages that represent a single logical “document”, to describe
intellectual property rights of Web pages, or to express the privacy preferences of an user as well as the
privacy policies of a Web site.

The Resource Description Framework in one of its encodings is represented as a semantic network. Nei-
ther the semantics of the network representation nor the semantics of the underlying RDF model are
formally defined. This may lead to different interpretations of the same semantic network by differ-
ent users/agents and thus, the interoperability claimed does not seem to be justifiable with respect to
semantics.

In [9], Reimer points out that semantic networks are expressible in first-order logic. First-order logic
is well studied and enables automatic inferencing based on syntactical processing of a knowledge base.
In this paper we present a formalization of RDF concepts and constraints expressed in first-order logic.
This intends to enable a further step towards semantic interoperability.

The remainder of this paper is structured as follows. Section 2 presents a brief discussion of related work.
In Section 3, a set of rules and facts will be determined allowing to “materialize” the intended semantic
constraints presented in the documents defining RDF [6, 2]. In the final section, possible consequences
and applications of our approach will be presented.

2 Related Work

The relevance of knowledge representation for a number of research and application areas is well known.
For a nice (technical) overview with an emphasis on logic, semantic nets and frames, see Reimer [9].

An example for an approach to relate logic-based formalisms and RDF is given in [8]. Because difficul-
ties in representing the supposed self-referentiality are expected, the classic distinction between model
and meta-models is made by introducing epistemological primitives (compare [9]) which are not further
explainable in the formalism itself (such as special type_of predicates). To our opinion, this does not

precisely capture what RDF was meant to be. After inspecting the set of rules that we provide below, we
hope that it might be clear that the structural and semantic simplicity and clarity of RDF is based on the
ability to make statements about instances, concepts, meta-concepts, meta-meta-concepts and so forth
without being forced to introduce an explicit level of (meta-)constructs that are not explainable within
the original model.

To be a little more precise: there is no self-referentiality in RDF, it is self-expressibility. Ultimately, RDF
relies on a very small set of basic elements (namely the ordered sequences (triples)) and basic “axioms”
(the rules and facts from below). What seems to be self-referentiality (in [8], for instance, the properties
subClassOf and type are mentioned) becomes clear, if the context of their usage is regarded, that is their
position in the triple. What remains in the end is syntactical manipulation to determine properties of the
model — and the (semantic) interpretation of the result depends on the position of “entities” in a triple and
not (only) on the fact, that the entities are “somewhere” in the triple. As can be seen from implementing
the rules and facts given below, the concepts and constraints of RDF are nicely and logically expressible.

A useful approach to explain RDF with the help of logic can be found in the RDF tutorial of Champin [3].
Our approach is more complete, tries to seperate clearly between the level of representation (triples) and
the level of knowledge (instanceOf, Resource, statements, predicates to express constraint violations
etc.), avoids asserting negated facts, and discusses a way to utilize the rules in applications (see below).
Nevertheless, we have profited from reading Champin’s paper.

Earlier work on processing RDF triples with logic have been described in [4]. The “Simple Logic-based
RDF Interpreter (SiLRI)” is presented. However, the intention had not been to clarify the semantics of
RDF and to express them in suitable logic rules but to directly use “logified” triples as a fact base. Our
approach is more general in the sense that we try to provide (in extension to the simple transformation
of a RDF triple into a fact in F-Logic) a basic set of facts and rules that capture the RDF concepts and
constraints and can be loaded into a logic-based inference engine to represent the intended semantics of
RDF documents (be it schemata or schema instances). We used the inference engine in SiLRI to test
our rule set. A SiLRI-conform datalog formulation of the rules and facts of our paper is given in the
appendix. We also used SWI-Prolog [10] to test our facts and rules. A Prolog-conform formulation of
the rules and facts of our paper can be obtained from [7]. The SGML package of SWI-Prolog provides
an RDF parser. The SWI-Prolog RDF parser together with our rules and facts is used to shift an RDF
model expressed in XML-Syntax from the representation level to the knowledge level. A knowledge
database which is build up after reading an RDF model can be queried with Prolog predicates according
to our facts and rules. An online test suite of this application can be found at [7].

The discussion of numerous aspects of a Semantic Web is ongoing and lively. We think, that RDF-based
representations of semantics may play a crucial role in further developments. We think that capturing
the intended semantics in first-order logic might be a valuable contribution to this and may provide RDF
with a formalization allowing its full exploitation as an key ingredient to an evolving Semantic Web.

3 RDF Concepts Expressed in First Order Logic

An RDF graph consists of nodes and arcs. Nodes are labeled either with an URI (concept Resource) or
an atomic value (concept Literal). We will assume the following definitions for an RDF graph, which
are adapted and extended from the definitions stated in [9] for semantic networks. (1) In an RDF graph
two nodes with different labels are considered to be different. (2) Two nodes with the same label are not
allowed. (3) A Literal node is represented by a rectangle. (4) A Resource (concept) node is represented
by an oval. (5) The representation of a Resource node or a Literal node implicitly states its existence.
(6) An arc links a Resource node either with a Literal node or another Resource node and is labeled with
an URI. Two nodes linked with an arc are called a statement. (7) All statements in an RDF Graph are
considered to be implicitly and conjunctively concatenated.

Assume that an RDF model is given as a semantic network. The predicate symbol arc (s, p, o) be
true if there is a directed arc from node s to node o and the arc is labeled with p.? The predicate symbol
rfc2396_conform(x) is true if the string x is built according to RFC 2396 [1]. The following rule shifts
the perspective from representation level (arc) to knowledge level (statement?).

Vs, p,0 : arc(s,p,0) Arfc2396_conform(p) = statement(s,p, o) (1)

In the following subsections, we will present most of the RDF concepts and constraints and their formu-
lation as logic rules. All text presented as Definitions have been taken directly from [6] (RDF-Definition)
or [2] (RDFS-Definition).

3.1 Basic RDF Concepts and Predicates
3.1.1 Resource

RDFS-Definition: All things being described by RDF expressions are called resources, and are con-
sidered to be instances of the class rdfs:* Resource. The RDF class rdfs:Resource
represents the set called ’Resources’ in the formal model for RDF presented in section 5 of the
Model and Syntax specification [6].

Members of the set Resource (see definition (1) of the RDF definitions summary in Appendix 5.4) are
the concepts in an RDF knowledge base. According to Reimer [9], concepts are all concrete and abstract
things which should be described. “Named” Resources® are identified by URIs. For the definition of
URISs see [1]°. The first and second entity of a statement, respectively of a triple, are Resources, the later
is identified by an URT’.

Vs, p, o : statement(s, p,0) = res(s) A uri(p) A obj(o) (2)
Vr s uri(r) = res(r) (3)
Vr i res(r) A rfe2396_conform(r) = named_res(r) 4)

2This directly corresponds to a triple {pred, sub, obj} in the representation of an RDF model as a set of triple statements.

3In an earlier version of the paper, the following rule required that subjects are RFC2396 conform. In the specification,
this is only necessary for (explicitly) named resources. Anonymous resources, which are present in the graphical and the XML
representation of the model, lead to generated names in the triple model. These names are not necessarily URIs (to be more
precise: no parser generates valid URIs for anonymous resources). To allow the inclusion of generated non-URI names in
triples, we weakened the constraint in the following rule. It is interesting to note that the formal model does not constrain
the name space for the identification of resources - however, in a complete set theoretic model, the alphabet to denote that
certain entities are members of the set of resources would have to be present. Implicitly, the name space is partitioned into
URIs, Literals and “generated” resource names. The specification does not provide a mechanism to prevent someone who
is modelling in triples to use a literal that looks like an URI or to generate a URI-conform string as a name for anonymous
resources. It is also hard to argue that any restriction on the identifier for a resource is necessary. Relevant is the meaning of
the identifier — and this meaning will be a consequence of its use as an argument to predicates.

4The XML-namespace rdf: refers to the namespace-URI http://www.w3.0rg/1999/02/22-rdf-syntax-ns# and the rdfs: refers
to http://www.w3.0rg/2000/01/rdf-schema#.

3In the underlying set theoretic model, each resources requires an identifier to “be something”, that is, each resource has
an identifier. Because there are anonymous resources in the graphical/ XML representation, there is a necessity to distinguish
among resources that are named (with an URI identifier) and anonymous resources (with an unconstrained identifier), see also
the previous footnote.

Note, that [1] defines an URI as a conceptual mapping to an entity. The referenced entity can be changed over time and
according to the requested MIME-Type different entities are referenced. Thus URIs are not necessarily unique.

"Which is an interpretation of the specs.

3.1.2 Literal

RDF-Definition: The most primitive value type represented in RDF, typically a string of characters.
The content of a literal is not interpreted by RDF itself and may contain additional XML markup.
Literals are distinguished from Resources in that the RDF model does not permit literals to be the
subject of a statement.

Members of the set Literal (see definition (2) of the RDF model) are atomic values such as textual strings
and are always the object of a statement. In a semantic RDF network it is not allowed to draw an arc
outgoing from a node of type Literal. Thus no statement can be made about a concept of type Literal. A
node in a semantic RDF network representing a Literal is labeled with the corresponding atomic value.
A Literal node it graphically represented as a rectangle.

Yo : obj(0) A —res(o) = lit(o) (5)

Yo : lit(o) = instanceO f(o,rdf s_Literal) (6)

3.1.3 Property

RDF-Definition: A specific attribute with defined meaning that may be used to describe other resources.
A property plus the value of that property for a specific resource is a statement about that resource.
A property may define its permitted values as well as the types of resources that may be described
with this property.

No rule is required, properties are a projection of the second argument of the logical predicate
statement. Note that a member of the set Property (see definition (3) of the RDF model) is also
a Resource.

3.1.4 Statement

RDF-Definition: A specific resource together with a named property plus the value of that property
for that resource is an RDF statement. These three individual parts of a statement are called,
respectively, the subject, the predicate, and the object. The object of a statement (i.e., the property
value) can be another resource or it can be a literal; i.e., a resource (specified by an URI) or a simple
string or other primitive datatype defined by XML. In RDF terms, a literal may have content that
is XML markup but is not further evaluated by the RDF processor.

To be able to make a statement about a statement it is possible to reify a statement (see definitions (9)
and (9a)-(9d) of the RDF model given in Appendix 5.4). Reifying a statement is achieved by creating
a concept node of the type Statement representing a statement. The values of the Property instances
rdf:subject,rdf:predicateand rdf : object refer to the parts of a statement.

Vs, s',p,0:res(s) Auri(p) A statement(s', TY PE3, STATEMENT)A @)
statement(s', SUBJECT, s) A statement(s', PREDICATE,p) A statement(s', OBJECT, o)

= reifies(s, s,p,0)

8 Abbreviation for a complete URI. Abbreviations will be expanded using either the rdf- or rdfs-namespace. We decided to
not emphasize this distinction more than necessary.

Vs, s',p,0: reifies(s’, s,p,0) = reifyingStatement(s') (8)

RDF-Definition: A statement and its corresponding reified statement exist independently in an RDF
graph and either may be present without the other. The RDF graph is said to contain the fact given
in the statement if and only if the statement is present in the graph, irrespective of whether the
corresponding reified statement is present.

Vs,s',p,0: reifies(s’, s, p,0) A statement(s,p,0) = reifies_fact(s',s,p,0) ©)]

3.2 Schema-Definition Concepts and Predicates
3.2.1 type

RDFS-Definition: This indicates that a resource is a member of a class, and thus has all the characteris-
tics that are to be expected of a member of that class. When a resource has an rdf : t ype property
whose value is some specific class, we say that the resource is an instance of the specified class.
The value of an rdf : t ype property for some resource is another resource which must be an in-
stance of rdfs:Class. The resource known as rdfs : Class is itself a resource of rdf : type
rdfs:Class. Individual classes (for example, 'Dog’) will always have an rdf : t ype property
whose value is rdfs:Class (or some subclass of rdfs:Class ...). A resource may be an
instance of more than one class.

See also definition (5) given in Appendix 5.4.

Vi, c : statement(i, TY PE, c) = instanceO f (i, c) (10)

Additional instanceOf relations will be derived from the rules capturing the subClassOf property. The
constraints mentioned above are expressed as facts, such as statement(CLASS, TY PE,CLASS)
(listed in the Appendix), and constraint violations will be detected by applying the range and domain
constraint rules (see below).

3.2.2 Class

RDFS-Definition: This corresponds to the generic concept of a Type or Category, similar to the notion
of a Class in object-oriented programming languages such as Java. When a schema defines a new
class, the resource representing that class must have an rdf : t ype property whose value is the
resource rdfs:Class. RDF classes can be defined to represent almost anything, such as Web
pages, people, document types, databases or abstract concepts.

We feel that the sentence “...similar to the notion of a Class in object-oriented programming languages
such as Java.” is misleading, as no monotonic inheritance of properties is given in the RDF model.
However, with additional constraint rules monotonic inheritance can be expressed.

RDFS-Definition: The resource known as rdfs:Class is itself a resource of rdf:type
rdfs:Class.

This, again, translates to statement (CLASS, TYPE, CLASS) . We included this kind of factual knowl-
edge in the fact base that can be found in the appendix of this paper. It also includes (most of) the other
facts that can be deduced from [6, 2], especially the rdf : type, rdfs:subClassOf properties and
the rdfs:range and rdfs : domain constraints.

3.2.3 subClassOf

RDFS-Definition: This property specifies a subset/superset relation between classes. The
rdfs:subClassOf property is transitive. If class A is a subclass of some broader class B,
and B is a subclass of C, then A is also implicitly a subclass of C. Consequently, resources that are
instances of class A will also be instances of C, since A is a sub-set of both B and C.

Vel, e2 : statement(cl, SUBCLASSOF, c2) = subClassOf(cl,c2) (11)

Vel, e2,¢3 : subClassO f(cl, c2) A subClassO f(c2,¢3) = subClassOf(cl,c3) (12)

Vi, cl, 2 : instanceO f (i, cl) A subClassO f(cl,c2) = instanceO f (i, c2) (13)
RDFS-Definition: A class may be a subclass of more than one class.
No rule required.

RDFS-Definition: A class can never be declared to be a subclass of itself, nor of any of its own sub-
classes.

So, cycles in the SUBCLASSOF chain are forbidden. As this is disputable (it expresses equality, compare
[3]) and as we decided to detect constraint violations but not to enforce certain reactions’, the following
rule is introduced:

Vel, e2 : subClassOf(cl,c2) A cl = ¢2 = subclass_cycle_violation(cl). (14)

The other constraints translate to range and domain constraints.

3.2.4 subPropertyOf

RDFS-Definition: The property rdfs:subPropertyOf is an instance of rdf : Property that is
used to specify that one property is a specialization of another. A property may be a specialization
of zero, one or more properties. If some property P2 is a subPropertyOf another more general
property P 1, and if a resource A has a P2 property with a value B, this implies that the resource A
also has a P1 property with value B.

Vpl, p2 : statement(pl, SUBPROPERTY OF,p2) = subPropertyO f (pl, p2) (15)

Vpl,p2,p3 : subPropertyOf(pl, p2) A subPropertyO f(p2, p3) = subPropertyOf(pl,p3) (16)

This establishes the transitivity of subPropertyOf. It is also used to attach “derived” properties to
resources:

Vs, pl,p2,0 : statement(s, pl, o) A subPropertyO f(pl,p2) = statement(s,p2,0) 17

“With respect to this, asserting negated facts (as is suggested in [3]) does not seem to be a reasonable way to express
constraint violations.

RDFS-Definition: A property can never be declared to be a subproperty of itself, nor of any of its own
subproperties.

With a reasoning analogous to the SUBCLASS case, the following rule is introduced:

Vpl, p2 : subPropertyO f(pl,p2) A pl = p2 = subproperty_cycle_violation(pl). (18)

This concludes the presentation of rules for subPropertyOf. Only this property requires the genera-
tion'® of new statements. The rules above simply add all derivable properties. This mutual dependency
between the predicates subPropertyOf and statement may lead to problems if the rule set is used with
standard SLD-resolution. In this case, the rules can be rewritten (and reduced) to check, if every state-
ment that should be present is indeed modeled.

3.2.5 domain

RDFS-Definition: An instance of ConstraintProperty that is used to indicate the class(es) on whose
members a property can be used. A property may have zero, one, or more than one class as its
domain. If there is no domain property, it may be used with any resource. If there is exactly
one domain property, it may only be used on instances of that class (which is the value of the
domain property). If there is more than one domain property, the constrained property can be
used with instances of any of the classes (that are values of those domain properties). ... The
rdfs:domainof rdfs:domainis the class rdf : Property. This indicates that the domain
property is used on resources that are properties. The rdfs:range of rdfs:domain is the
class rdfs:Class. This indicates that any resource that is the value of a domain property will
be a class. Note: This specification does not constraint the number of rdfs : domain properties
that a property may have. If there is no domain property, we know nothing about the classes with
which the property is used. If there is more than one rdfs:domain property, the constrained
property can be used with resources that are members of any of the indicated classes. Note that
unlike range this is a very weak constraint.

Rules for determining domain constraint violations'':

Vp,i,c: statement(p, DOM AIN,c) A instanceO f (i, c) = domain(i, p) (19)
Vp, ¢ : statement(p, DOM AIN, c) = domain_constrained_prop(p) (20)
Vs, p,o : statement(s, p,0) A domain_constrained_prop(p) A ~domain(s, p) 21

= domain_violation(s, p, o)

Note: Rules for determining a violation of the only-classes-as-object-of-domain-property-statements
constraint are not necessary, because, with the given facts, this is a subcase of the general case above.

The inherently transitive rule Vs, pl,p2,0 : statement(s,pl,0) A statement(pl, SUBPROPERTY OF,p2) =
statement(s, p2,0) would suffice to generate all derivable new “statements”. However, the no-cycle constraint requires to
make the transitivity of the subProperty relation explicit, so we decided to generate the new statements using the knowledge
level predicate subPropertyOf, which is present anyway.

with respect to potential extensions or additional rules describing new or further restricted constraints for specific schemata,
a more general approach might be to introduce a violation predicate and to register the violating statements and a violation
identifier in this predicate. This has been done for the datalog rules in the appendix and is a simple extension of the rules given
here.

3.2.6 range

RDFS-Definition: An instance of ConstraintProperty that is used to indicate the class(es) that the val-
ues of a property must be members of. The value of a range property is always a Class. Range
constraints are only applied to properties. A property can have at most one range property. It is pos-
sible for it to have no range, in which case the class of the property value is unconstrained.. .. The
rdfs:domain of rdfs:range is the class rdf :Property. This indicates that the range
property applies to resources that are themselves properties. The rdfs: rangeof rdfs: range
is the class rdfs:Class. This indicates that any resource that is the value of a range property
will be a class.

Rules for determining if at most one range constraint is present:

Vs, o : statement(p, RANGE, o) = is_range(o,p) (22)

Vp,rl,r2 :is_range(rl,p) Ais_range(r2,p) A (rl # r2) = range_cardinality_violation(p) (23)

Remark: It might be reasonable to allow multiple range constraints. For pointers to a discussion, see the
next footnote.

Rules for determining range violations:

Vp,r :is_range(r,p) = has_range(p) (24)

Vs, p,o0,c: statement(s, p, o) A instanceO f (o, c) Nis_range(c,p) = range(o,p) (25)

Vs, p, o : statement(s, p,0) A has_range(p) A =range(o,p) = range_violation(s,p,0) (26)

This parallels the determination of domain constraint violations, it has the consequence that also multiple
range constraints are checked. We’ve chosen to model in this way because it is not immediately clear how
the reaction on a violation of the one-range-at-most constraint should look like. If the one-range con-
straint should be enforced, an application should react appropriately if the range_cardinality_violation
predicate is not empty before utilizing the range_violation information. If the general behaviour should
be to ignore multiple range constraints, the negated range_cardinality_violation predicate can be
added to the range_violation subgoals. We think, however, that the least common denominator in
interpreting the semantics should be to detect violations and to leave further reactions to applications.!?

3.3 Utility Concepts
3.3.1 Seq

RDFS-Definition: This corresponds to the class called *Sequence’ in the formal model for RDF pre-
sented in section 5 of the Model and Syntax specification [6]. It is an instance of rdfs:Class
and rdfs:subClassOf rdfs:Container.

2Further comments on the usefulness of range constraints and the limitation imposed by the one-range-at-most constraint
can be found in the discussion related to a draft of this paper that took place in the RDF interest group mailing list, see
http://lists.w3.org/Archives/Public/www-rdf-interest/2000Sep/0107.html (discussion starting point). For an overview of the
whole discussion related to the draft paper see http://nestroy.wi-inf.uni-essen.de/rdf/logical _interpretation/discussion.html.

See also definition (10) and (11) given in the Appendix.

Vs, o : statement(s, TY PE,SEQ) A statement(s, _1,0) = seq(s, 0) 27

Vs, 01,02 : seq(s,ol) A statement(s, 2,02) = seq(s,0l,02) (28)

Remark: Consider these rules as a proposal only. They could more easily be formulated with lists or
other “builtin” devices in specific implementations of inference engines. Some problems on the seman-
tic level remain: it is not clear, how a missing _X in a sequence (e.g.,_1, _3, 4) should be treated — or,
for instance, two _X properties that are attached to a resource (which value is relevant?). More problems
may occur if the evolution of a model is considered: removing or adding an element may require ex-
cessive renumbering (most problems are “automatically ” avoided, if the arcs have been generated from
RDF/XML serialization syntax). The rules (and problems) for BAG and ALT are similar.

4 Discussion

We tried to design the presented logic-based formulation of RDF concepts and constraints in the RDF-
spirit of simplicity, universality, and extensibility. It gives an opportunity to more precisely capture the
intended semantic constraints that underly schemata developed on top of RDF. The semantics of RDF
provide an open and relatively unconstrained framework of basic concepts and constraints. It is possi-
ble to exploit and restrict these opportunities by introducing rules into our simple knowledge base that
capture the intended semantics of newly introduced concepts and are build upon the “fundamental” rules
and facts of RDF. We plan to describe the logical formalization of XWMF (see [5, 11]), a framework
and toolset for RDF-based web engineering as an example. In XWMEF, for instance, strictly monotonous
inheritance is used to constrain the typing of components. This can easily be encoded (analogous to the
rule for subPropertyOf) as a logic rule, which is then added to the basic knowledge base. It is straight-
forward to provide an XML vocabulary that allows the specification of the knowledge base in XML. An
extended RDF parser could use the logic rules, the RDF Schema definition and the RDF document to
determine the validity of the document. For example, the SiLLRI inference engine could be extended to
provide this capability (we provide the basic set of facts and rules in datalog syntax in the appendix).
With a suitable API or via the exchange of XML messages in a suitable protocol, the inference engine
could and should be made part of the ongoing processing of RDF statements in the supported applica-
tion. In a naive implementation, this would only require that queries could be directed to the engine
and answers to the query would be delivered to the application (the possibility to retract facts - that is, to
treat non-monotonous dynamic behaviour of the encoded knowledge would require some more effort). In
XWMF or other modelling tools that represent the modelling knowledge in RDF, this could, for example,
be used to offer a set of possibilities for attaching properties to resources (by exploiting the DOMAIN
constraint), to select values for objects (RANGE), for generating inherited properties (if inheritance is
monotonous as in XWMF) etc.

While this alone is already useful for “standalone” applications, the true power of an unified logic repre-
sentation of the RDF concepts (which are, in the RDF documents, only syntactically formalized) and the
intended constraints (which are only informally described in the RDF documents) lies in the possibility to
improve interoperability by providing a level of precise and validable basic (or minimal) common seman-
tics. Without this, the (semantic) interpretation of RDF documents (be it schemata or schema instances)
will be subject to interpretation and discussion and this will ultimately lead to ambiguity — very much
like the textual description of presentation “semantics” in HTML lead to different visual interpretations
— but this time with even more unwanted effects, because RDF wants to specify (some) semantics, and

thus the meaning of the basic set of semantic constructs in RDF should be made as precise as possible
or an universe of interpretations will arise where clarity and common understanding were intended. In
the present state, it is difficult for anyone to verify if his understanding of RDF’s intentions is “correct”
— the approach described herein allows to do so under the sufficiently safe assumption that the scientific
community has a well-developed common understanding of how to interpret first-order logic.

References

(1]

(2]

(3]

(4]

(5]

(7]
(8]

(9]

[10]
[11]

Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource Identifiers (URI): Generic
Syntax. RFC, category: Standards track, IETF, August 1998. http://www.ietf.org/rfc/rfc2396.txt.

Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification 1.0.
Candidate Recommendation, W3C, March 2000. http://www.w3.org/TR/2000/CR-rdf-schema-
20000327.

Pierre-Antoine Champin. RDF Tutorial, March 2000. http://www710.univ-lyon1.fr/ champin/rdf-
tutorial/rdf-tutorial.ps.gz.

Stefan Decker, Dan Brickley, Janne Saarela, and Jiirgen Angele. A Query and Inference
Service for RDF. In Online Proceedings of the QL’98 - The Query Languages Workshop.
http://www.w3.org/TandS/QL/QL98/pp/queryservice.html.

Reinhold Klapsing and Gustaf Neumann. Applying the Resource Description Framwork to
Web Engineering. In Proceedings of the Ist International Conference on Electronic Commerce
and Web Technologies: EC-Web 2000, LNCS. Springer, September 2000. http://nestroy.wi-inf.uni-
essen.de/xwmf/paper/xwmf_EcWeb/.

Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax Spec-
ification. Recommendation, W3C, February 1999. http://www.w3.0rg/TR/1999/REC-rdf-syntax-
19990222.

Logcial Interpretation of RDF — Online Test Suite. http://wonkituck.wi-inf.uni-essen.de/rdfs.html.

Wolfgang Nejdl, Martin Wolpers, and Christian Capelle. The RDF Schema Specification Revis-
ited. In Modelle und Modellierungssprachen in Informatik und Wirtschaftsinformatik: Beitrdige
des Workshops Modellierung 2000, volume 15 of Koblenzer Schriften zur Informatik, 2000.
http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2000/modeling2000/wolpers.pdf.

Ulrich Reimer. Einfithrung in die Wissensreprisentation. Leitfaden der angewandten Informatik.
Teubner, 1991.

SWI-Prolog. http://www.swi.psy.uva.nl/projects/SWI-Prolog/.

XWMEF-Home-Page. http://nestroy.wi-inf.uni-essen.de/xwmf/.

5 Appendix

5.1

Datalog Rules

Assume that the arcs have already been transformed to statements (predicate s below). The rules and
facts can be fed to the datalog parser (with option -simple) of SiLLRIL. The rules can also be requested as
files from the authors.

10

res(S) & uri(P) & obj(0) <- s(S,P,0).

res (R) <- uri(R).

named_res (R) <- res(R) & rfc2396_conform(R).
1it (0) <= obj(0) & -res(0O).
instanceOf (O, rdfs_Literal) <- 1it (O).

reifies(R,S,P,0) <- res(S) & uri(P) & s(R,rdf_type,rdf_statement) &

s (R, rdf_subject,S) & s(R,rdf_predicate,P) & s(R,rdf_object,O).
reifyingStatement (R) <- reifies(R,S,P,0).
reifies_fact (R,S,P,0) <- reifies(R,S,P,0) & s(S,P,0).

instanceOf (I,C) <- s(I,rdf_type,C).

subClassOf (C,D) <- s (C,rdfs_subClassOf,D).

subClassOf (C,E) <- subClassOf(C,D) & subClassOf(D,E).

instanceOf (I,D) <- instanceOf(I,C) & subClassOf(C,D).
subClass_cycle_violation(Cl) <- subClassOf(C1l,C2) & unify(C1l,C2).

subPropertyOf (A,B) <- s(A,rdfs_subPropertyOf,B).

subPropertyOf (A,C) <- subPropertyOf (A,B) & subPropertyOf (B,C).
s(S,P2,0) <- s(S,P1,0) & subPropertyOf (P1,P2).
subProperty_cycle_violation(Pl) <- subPropertyOf (P1l,P2) & unify(P1,P2).

domain_constrained_prop (P) <- s(P,rdfs_domain,X).
domain (X,P) <- s(P,rdfs_domain,C) & instanceOf (X,C).
domain_violation(S,P,0) <- s(S,P,0) & domain_constrained_prop(P) & —-domain(S,P).

is_range(X,P) <- s(P,rdfs_range,X).

range_cardinality_violation(P) <- is_range (X,P) & is_range(Y,P) & —-unify(X,Y).
has_range (P) <- is_range (X,P).

range (X,P) <- is_range(C,P) & instanceOf (X,C).

range_violation(S,P,0) <- s(S,P,0) & has_range(P) & -range(O,P).

violation("Domain violation",S,P,0) <- domain_violation(S,P,0).

violation ("Range cardinality", S, rdfs_range, Q) <-
range_cardinality_violation(S) & s (S, rdfs_range,O).

violation ("Range violation",S,P,0) <- range_violationy(S,P,0).

5.2 Datalog Concept Facts

s (rdfs_Literal,rdf_type,rdfs_Class).
s(rdfs_Class, rdf_type,rdfs_Class).

s (rdfs_Resource, rdf_type,rdfs_Class).

s (rdf_Property, rdf_type, rdfs_Class) .

s (rdfs_ConstraintResource, rdf_type, rdfs_Class) .
s (rdfs_ConstraintProperty, rdf_type, rdfs_Class) .
s (rdfs_ContainerMembershipProperty, rdf_type,rdfs_Class).
s (rdfs_range, rdf_type, rdfs_ConstraintProperty) .
s (rdfs_domain, rdf_type, rdfs_ConstraintProperty) .
s (rdf_type, rdf_type, rdf_Property).

s (rdfs_subPropertyOf, rdf_type, rdf_Property) .

s (rdfs_subClassOf, rdf_type, rdf_Property) .

s (rdfs_seeAlso, rdf_type, rdf_Property) .

s (rdfs_isDefinedBy, rdf_type, rdf_Property) .

s (rdfs_comment, rdf_type, rdf_Property) .
s(rdfs_label, rdf_type,rdf_Property).

s (rdf_subiject, rdf_type, rdf_Property) .

s (rdf_predicate, rdf_type, rdf_Property).
s (rdf_obiject, rdf_type, rdf_Property) .

s (rdf_Statement, rdf_type,rdfs_Class).

s(rdfs_Class, rdfs_subClassOf, rdfs_Resource) .

11

s(rdfs_ConstraintResource, rdfs_subClassOf, rdfs_Resource) .

s (rdf_Property, rdfs_subClassOf, rdfs_Resource) .

s (rdfs_ConstraintProperty, rdfs_subClassOf, rdf_Property) .

s (rdfs_ConstraintProperty, rdfs_subClassOf, rdfs_ConstraintResource) .
s (rdfs_ContainerMembershipProperty, rdfs_subClassOf, rdf_Property) .

5.3 Datalog Constraint Facts

s (rdfs_range, rdfs_range, rdfs_Class) .

s (rdf_type, rdfs_range, rdfs_Class).

s (rdfs_subClassOf, rdfs_range,rdfs_Class).

s (rdfs_domain, rdfs_range, rdfs_Class).

s (rdfs_comment, rdfs_range, rdfs_Literal).

s (rdfs_label, rdfs_range,rdfs_Literal).

s (rdf_subject, rdfs_range, rdfs_Resource).

s (rdf_predicate, rdfs_range, rdf_Property) .

s (rdfs_subPropertyOf, rdfs_range, rdf_Property) .

s (rdfs_subPropertyOf, rdfs_domain, rdf_Property) .
s (rdfs_range, rdfs_domain, rdf_Property) .

s (rdfs_domain, rdfs_domain, rdf_Property).

s (rdf_subiject, rdfs_domain, rdf_Statement) .

s (rdf_predicate, rdfs_domain, rdf_Statement) .

s (rdf_object, rdfs_domain, rdf_Statement).

s (rdf_type, rdfs_domain, rdfs_Resource) .
s(rdfs_subClassOf, rdfs_domain, rdfs_Class).

s (rdfs_comment, rdfs_domain, rdfs_Resource) .

s (rdfs_label, rdfs_domain, rdfs_Resource) .

5.4 Basic Definitions of the RDF Model

The following definitions (1)-(11) of the RDF model have been taken from Section 5 (Formal Model for RDF) of the RDF
Model & Syntax Specification [6].

(1) There is a set called Resources.
(2) There is a set called Literals.
(3) There is a subset of Resources called Properties.
(4) There is a set called Statements, each element of which is a triple of the form {pred, sub, obj} where predisa
property (member of Properties), sub is a resource (member of Resources), and ob 7 is either a resource or a literal (member
of Literals).
(5) There is an element of Properties known as type.
(6) Members of Statements of the form {type, sub, obj} must satisfy the following: sub and obj are members of
Resources. [2] places additional restrictions on the use of type.
(7) There is an element of Resources, not contained in Properties, known as RDF : Statement.
(8) There are three elements in Properties known as RDF : predicate, RDF : subject and RDF : object.
(9) Reification of a triple {pred, sub, obj} of Statements is an element r of Resources representing the reified triple and
the elements s1, s2, s3, and s4 of Statements such that

(9a) s1l: {RDF:predicate, r, pred}

(9b) s2: {RDF:subject, r, subj}

(9¢) s3: {RDF:object, r, obij}

(9d) s4: {RDF:type, r, [RDF:Statement]}
(10) There are three elements of Resources, not contained in Properties, known as RDF : Seq, RDF : Bag, and RDF:Alt.
(11) There is a subset of Properties corresponding to the ordinals (1, 2, 3, ...) called Ord. We refer to elements of Ord as
RDF:_1, RDF:_2, RDF:_3,

12

