A review of First-Order Logic

Using KIF

Knowledge Interchange Format

- KIF ~ First order logic theory
- An interlingua for encoded knowledge
 - Takes translation among n systems from O(n^2) to O(n)
- Common language for reusable knowledge
 - Implementation independent semantics
 - Highly expressive - can represent knowledge in typical application KBs.
 - Translatable - into and out of typical application languages
 - Human readable - good for publishing reference models and ontologies.
- Current specification at http://logic.stanford.edu/

Know. Base in Lang1
KIF <-> Lang1 Translator
Sys 1
Know. Base in Lang2
KIF <-> Lang2 Translator
Sys 2
Know. Base in KIF
Library
KIF
Know. Base in Lang3
KIF <-> Lang3 Translator
Sys 3

KIF Syntax and Semantics

- Extended version of first order predicate logic
- Simple list based linear ASCII syntax, e.g.,
 (forall x (=> (P x) (Q x)))
 (exists ?person (mother mary ?person))
 (=> (apple x) (red x))
 (<= (father x ?y) (and (child ?x ?y) (male ?x)))
- Model theoretic semantics
- KIF includes an axiomatic specification of large function and relation vocabulary and a vocabulary for numbers, sets, and lists

KR Language Components

- A logical formalism
 - Syntax for wffs
 - Vocabulary of logical symbols
 - Interpretation semantics for the logical symbols
 - E.g., (=> (Person ?x) (= (Gender (Mother ?x)) Female)))
- An ontology
 - Vocabulary of non-logical symbols
 - Relations, functions, constants
 - Axioms restricting the interpretations of the symbols
 - E.g., (=> (Person ?x) (= (Gender (Mother ?x)) Female)))
- A proof theory
 - Specification of the reasoning steps that are logically sound
 - E.g., (=> S1 S2) and S1 entails S2
Conceptualization

- Universe of discourse
 - Set of objects about which knowledge is being expressed
- Object
 - Concrete: Clyde, my car
 - Abstract: Justice, 2
 - Primitive: Resister
 - Composite: Electric circuit
 - Fictional: Sherlock Holmes

Blocks World

- Objects: a, b, c, d, e, table

Relations and Functions

- Relation
 - Set of finite lists of objects
 - E.g., Parent: (Richard Earl) (Richard Polly) (Debbie Don) ...
 - Mapping: <list of objects> → <truth value>
- Function
 - Relation that associates a unique nth element with a given n-1 elements
 - E.g., +: (1 3 4) (17 23 40) (2 7 10 12 31) ...
 - Referred to as (arg1, arg2, ..., argk, value)
 - Mapping: <list of objects> → <object>

Blocks World

- Objects: a, b, c, d, e, table
- Relations
 - Above: [(a b) (a c) (b c) (d e)]
 - Clear: [(a) (d)]
 - Table: [(c) (e)]
- Functions
 - On: [(a b) (b c) (d e)]
Predicate Calculus - KIF

- Knowledge Base - Collection of sentences
- Sentence - Expression denoting a statement
- Term - Expression denoting an object
- Objects always in the conceptualization
 - Words
 - Complex numbers
 - All finite lists of objects
 - All sets of objects
 - ^ (bottom)

Declarative Semantics

- Interpretation -
 - <object constant> => <object>
 - <logical constant> => <truth value>
 - <relation constant> => (<tuple of objects> → <truth value>)
 - <function constant> => (<tuple of objects> → <object>)
- Variable assignment -
 - <individual variable> => <object>
 - <sequence variable> => <finite sequence of objects>
- Semantic value - <term> => <object>
 - Defined in terms of an interpretation and variable assignment
- Truth value - <sentence> => {true, false}
 - Defined in terms of an interpretation and variable assignment
- Version of a variable assignment
 - V' is a version of a variable assignment V with respect to variables var1,...,varn if and only if V' agrees with V on all variables except for var1,...,varn.

Constants, Individual Variables, Function Terms

- Constant - Word
 - E.g., Fred, Block-A, Justice
 - SIV(<constant>) = I(<constant>)
- Individual Variable - Word beginning with “?”
 - E.g., ?x, ?The-Murderer
 - SIV(<individual variable>) = V(<individual variable>)
- Function Term
 - <function constant> <term>* [sequence variable]
 - E.g., (plus 2 3) (Father-Of Richard)
 - SIV((fn term1 ... termmn)) = I(fn)[SIV(term1) ... SIV(termmn)]
 - SIV((fn term1 ... termmn @var)) =
 - I(fn)[SIV(term1) ... SIV(termmn) | V(@var)]

List Terms and Set Terms

- List Term
 - (listof <term>* [<seqvar>])
 - E.g., (listof A B C) (listof A ?second @rest)
 - SIV((listof term1 ... termmn)) = SIV(term1), ..., SIV(termnn)
 - SIV((listof term1 ... termmn @var)) =
 - SIV(term1), ..., SIV(termnn) | V(@var)
- Set Term
 - (setof <term>* [<seqvar>])
 - E.g., (setof A B C) (setof A ?X @Z)
 - SIV((setof term1 ... termmn)) = SIV(term1), ..., SIV(termnn)
 - SIV((setof term1 ... termmn @var)) =
 - SIV(term1), ..., SIV(termnn) U {x | (Si) x = SIV(nth(@var i))}
Logical Terms

- (if <sentence> <term> [<term>])
 - E.g., (if (Above A B) A B)
 - SIV((if sent term)) =
 - SIV(term) when TIV(sent) = true
 - ^ otherwise
 - SIV((if sent term1 term2)) =
 - SIV(term1) when TIV(sent) = true
 - SIV(term2) otherwise

- (cond (<sentence> <term>) … (<sentence> <term>))
 - E.g., (cond ((Above A B) A) ((Above B A) B))
 - SIV((cond (sent1 term1) … (sentn termn))) =
 - SIV(term1) when TIV(sent1) = true
 - …
 - SIV(termn) when TIV(sentn) = true
 - ^ otherwise

Quantified Terms

- Set Forming Term - (setofall <term> <sentence>)
 - E.g., (setofall ?block (Above ?block A))
 - SIV((setofall term sent)) =
 - SIV(term) when TIV(sent) = true
 - ^ otherwise

- Designator - (the <term> <sentence>)
 - E.g., (the ?block (Above ?block A))
 - SIV((the term sent)) =
 - SIV'(term) when
 - V' is a version of V wrt the variables in term, and
 - TIV'(sent) = true, and
 - SIV''(term) = SIV'(term)
 - ^ otherwise

Logical Constants, Equations, Inequalities

- Logical constant
 - Tiv(constant) = I(constant)
 - Tiv(true) = true
 - Tiv(false) = false

- Equations - (= <term> <term>)
 - E.g., (= (Father Richard) Earl) (= A B)
 - TIV((= term1 term2)) =
 - true when SIV(term1) and SIV(term2) are the same object
 - false otherwise

- Inequalities - (/= <term> <term>)
 - E.g., (/= (Father Richard) (Father Bob)) (= A B)
 - TIV((/= term1 term2)) = TIV((not (= term1 term2)))

Relational Sentences

- (<relation constant> <term>* [<sequence variable>])
 - E.g., (Parent Richard Earl) (Clear A) (Set-Partition Set1 @Sets)
 - TIV((rel term1 … termn)) =
 - true when I(rel)[SIV(term1), …, SIV(termn)] is true
 - false otherwise

- (<function constant> <term>* <term>)
 - E.g., (Father Richard Earl) (Plus 2 5 7)
 - TIV((fun arg1 … argn val)) =
 - true when I(fun)[SIV(val)] is true
 - false otherwise
Logical Sentences: **not, and, or**

- **Negation** - (not <sentence>)
 - E.g., (not (On A D)) (not (On B B))
 - TIV((not sent)) =
 - true when TIV(sent) is false
 - false otherwise

- **Conjunction** - (and <sentence>*)
 - E.g., (and (On A B) (On B C))
 - TIV((and sent1 … sentn)) =
 - true when TIV(senti) is true for all i=1,…,n
 - false otherwise

- **Disjunction** - (or <sentence>*)
 - E.g., (or (On A D) (On A B))
 - TIV((or sent1 … sentn)) =
 - true when TIV(senti) is true for some i=1,…,n
 - false otherwise

Universally Quantified Sentences

- **(forall <individual variable> <sentence>)**
 - E.g., (forall ?b1 (not (On ?b1 ?b1)))
 - TIV((forall ?var sent)) =
 - true when TIV'(sent) = true
 - for all versions V' of V with respect to variable ?var
 - false otherwise

- **(forall <individual variable>* <sentence>)**
 - E.g., (forall (?b1 ?b2) (=> (On ?b1 ?b2) (Above ?b1 ?b2)))
 - TIV((forall ?var1 … ?varn sent)) =
 - true when TIV'(sent) = true
 - for all versions V' of V with respect to ?var1 … ?varn
 - false otherwise

Existentially Quantified Sentences

- **(exists <individual variable> <sentence>)**
 - E.g., (exists ?b (or (On ?b1 table) (exists ?b2 (On ?b1 ?b2))))
 - TIV((exists ?var sent)) =
 - true when TIV'(sent) = true
 - for some version V' of V with respect to variable ?var
 - false otherwise

- **(exists <individual variable>* <sentence>)**
 - E.g., (exists (?b1 ?b2) (and (On ?b1 ?b2) (Above ?b1 ?b2)))
 - TIV((exists ?var1 … ?varn sent)) =
 - true when TIV'(sent) = true
 - for some version V' of V with respect to ?var1 … ?varn
 - false otherwise

E.g., (or (On ?b1 table) (exists ?b2 (On ?b1 ?b2)))
An Example: Digital Circuit C1

Russell and Norvig, Figure 8.1

Domain Conceptualization

- Objects
 - Circuits
 - Terminals
 - Signals
 - Gates
 - Gate types
 - Signal values
- Relations
 - Connected: (<terminal> <terminal>)
- Functions
 - Type: <gate> → <gate type>
 - In: (<index> <gate>) → <input terminal>
 - Out: (<index> <gate>) → <output terminal>
 - Signal: <terminal> → <signal value>

Electronic Circuit Domain Theory

- Connected terminals have the same signal

 \[(\Rightarrow (\text{Connected} ?t1 ?t2) = (\text{Signal} ?t1) = (\text{Signal} ?t2)) \]

- Signal at terminal is either on or off

 \[(\text{or} = (\text{Signal} ?t) \text{On}) = (\text{Signal} ?t) \text{Off}) \]

 \[(\text{or} = (\text{Signal} ?t) \text{On}) = (\text{Signal} ?t) \text{Off}) \]

 \[(\text{not} = (\text{On} \text{Off})) \]

- Connected is commutative

 \[(\Leftrightarrow (\text{Connected} ?t1 ?t2) = (\text{Connected} ?t2 ?t1)) \]

OR and AND Gates

- OR gate’s output is on when any of its inputs are on

 \[(\Rightarrow = (\text{Type} ?g) \text{OR}) \]

 \[(\Leftrightarrow = (\text{Signal} (\text{Out} 1 ?g)) \text{On}) \]

 \[(\exists ?i = (\text{Signal} (\text{In} ?i ?g)) \text{On}) \]

- AND gate’s output is off when any of its inputs are off

 \[(\Rightarrow = (\text{Type} ?g) \text{AND}) \]

 \[(\Leftrightarrow = (\text{Signal} (\text{Out} 1 ?g)) \text{Off}) \]

 \[(\exists ?i = (\text{Signal} (\text{In} ?i ?g)) \text{Off}) \]
XOR and NOT Gates

- **XOR gate**’s output is on when its inputs are different

 \[
 \Rightarrow \; (= \; (\text{Type} \; ?g) \; \text{XOR}) \]

 \[
 \Leftrightarrow \; (= \; (\text{Signal} \; (\text{Out} \; 1 \; ?g)) \; \text{On})
 \]

 \[
 (\text{not} \; (= \; (\text{Signal} \; (\text{In} \; 1 \; ?g)) \; (\text{Signal} \; (\text{In} \; 2 \; ?g)))\))
 \]

- **NOT gate**’s output is different from its inputs

 \[
 \Rightarrow \; (= \; (\text{Type} \; ?g) \; \text{NOT})
 \]

 \[
 (\text{not} \; (= \; (\text{Signal} \; (\text{Out} \; 1 \; ?g)) \; (\text{Signal} \; (\text{In} \; 1 \; ?g))))\))
 \]

Circuit C1 Representation

- **Gates**

 \[
 (= \; (\text{Type} \; X1) \; \text{XOR}) \quad (= \; (\text{Type} \; X2) \; \text{XOR})
 \]

 \[
 (= \; (\text{Type} \; A1) \; \text{AND}) \quad (= \; (\text{Type} \; A2) \; \text{AND})
 \]

 \[
 (= \; (\text{Type} \; O1) \; \text{OR})
 \]

- **Connections**

 \[
 (\text{Connected} \; (\text{Out} \; 1 \; X1) \; (\text{In} \; 1 \; X2)) \quad (\text{Connected} \; (\text{In} \; 1 \; C1) \; (\text{In} \; 1 \; X1))
 \]

 \[
 (\text{Connected} \; (\text{Out} \; 1 \; X1) \; (\text{In} \; 2 \; A2)) \quad (\text{Connected} \; (\text{In} \; 1 \; C1) \; (\text{In} \; 1 \; A1))
 \]

 \[
 (\text{Connected} \; (\text{Out} \; 1 \; A2) \; (\text{In} \; 1 \; O1)) \quad (\text{Connected} \; (\text{In} \; 2 \; C1) \; (\text{In} \; 2 \; X1))
 \]

 \[
 (\text{Connected} \; (\text{Out} \; 1 \; A1) \; (\text{In} \; 2 \; O1)) \quad (\text{Connected} \; (\text{In} \; 2 \; C1) \; (\text{In} \; 2 \; A1))
 \]

 \[
 (\text{Connected} \; (\text{Out} \; 1 \; X2) \; (\text{Out} \; 1 \; C1)) \quad (\text{Connected} \; (\text{Out} \; 1 \; O1) \; (\text{Out} \; 2 \; C1))
 \]

 \[
 (\text{Connected} \; (\text{Out} \; 1 \; A2) \; (\text{Out} \; 1 \; C1)) \quad (\text{Connected} \; (\text{Out} \; 3 \; C1) \; (\text{In} \; 2 \; X2))
 \]

 \[
 (\text{Connected} \; (\text{Out} \; 2 \; O1) \; (\text{Out} \; 2 \; C1)) \quad (\text{Connected} \; (\text{In} \; 3 \; C1) \; (\text{In} \; 1 \; A2))
 \]

Knowledge About Knowledge

- **KIF represents knowledge about knowledge** by allowing expressions to be treated as objects in the universe of discourse

- **KIF expressions** are lists and can be referred to using the `quote` operator

 \[
 \Rightarrow \; (\text{believes} \; \text{John} \; \text{material moon bleuchese})
 \]

 \[
 \Rightarrow \; (\text{believes} \; \text{john} \; ?p) \; (\text{believes} \; \text{mary} \; ?p)
 \]

 or using the `listof` operator

 \[
 \Rightarrow \; (\text{believes} \; \text{John} \; (\text{listof} \; \text{material} \; ?x \; ?y))
 \]

 \[
 (\text{believes} \; \text{Lisa} \; (\text{listof} \; \text{material} \; ?x \; ?y))
 \]

- **Vocabulary is available for evaluating an expression**

 \[
 (= \; (\text{denotation} \; (\text{listof} \; \text{F} \; ?x \; ?y)) \; (\text{F} \; ?x \; ?y))
 \]

 \[
 \Rightarrow \; (\text{sentence} \; ?p) \; (\text{true} \; (\text{listof} \; \Rightarrow \; ?p \; ?p))
 \]

Big KIF and Little KIF

- **That KIF is highly expressive language** is a desirable feature; but there are disadvantages.
 - complicates job of building fully conforming systems.
 - resulting systems tend to be “heavyweight”

- **KIF has “conformance categories”** representing dimensions of conformance and specifying alternatives within that dimension.

- **A “conformance profile”** is a selection of alternatives from each conformance category.

- System builders decide upon and adhere to a conformance profile sensible for their applications.
Conformance Categories and Profiles

- **Conformance Categories**
 - **logical form:** {atomic, conjunctive, positive, logical, rule-based, quantified}
 - **recursion:** yes/no
 - **terms:** {constants, variables, complex terms}
 - **relational variables:** yes/no

- **Common Conformance Profiles might be**
 - Databases (ground atomic assertions & conjunctive forms)
 - Datalog
 - Relational logic
 - First order logic
 - Second order logic

KIF vs ANSI KIF

- **KIF is the object of an ANSI Ad Hoc standardization group (X3T2)**
- **ANSI KIF is somewhat different from previous specs**
 - No non-monotonic rules
 - Allow for possible (future) higher order extensions
 - Defines a standard infix format for presenting KIF

KIF Software

- Several KIF based reasoners in LISP are available from Stanford (e.g., EPILOG).
- IBM’s ABE (Agent Building Environment) & RAISE reasoning engine use KIF as their external language.
- Stanford’s Ontolingua uses KIF as its internal language.
- Translators (partial) exist for a number of other KR languages, including LOOM, Classic, CLIPS, Prolog,...
- Parsers for KIF exist which take KIF strings into C++ or Java objects.