9.3.2

First-Order Logic (FOL) part 2

Overview

- We'll first give some examples of how to translate between FOL and English
- Then look at modelling family relations in FOL
- And finally touch on a few other topics

Translating English to FOL

Every gardener likes the sun

 $\forall x \text{ gardener}(x) \rightarrow \text{likes}(x, \text{Sun})$

All purple mushrooms are poisonous

 $\forall x (mushroom(x) \land purple(x)) \rightarrow poisonous(x)$

No purple mushroom is poisonous (two ways) $\neg \exists x \text{ purple}(x) \land \text{mushroom}(x) \land \text{poisonous}(x)$

 $\forall x \text{ (mushroom(x) } \land purple(x)) \rightarrow \neg poisonous(x)$

English to FOL: Counting

Use = predicate to identify different individuals

There are <u>at least</u> two purple mushrooms

- $\exists x \exists y mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land \neg(x=y)$
- This says that there exisit an x and a y such that
 - "x is a purple mushroom" and
 - "y is a purple mushroom" and
 - "x and y are not the same objects"

English to FOL: Counting

There are <u>exactly</u> two purple mushrooms

 $\exists x \exists y mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land \neg(x=y) \land$

 $\forall z (mushroom(z) \land purple(z)) \rightarrow ((x=z) \lor (y=z))$

This says that

- "x is a purple mushroom" and
- "y is a purple mushroom" and
- "x and y are not the same objects"
- If there's a purple mushroom z, then either z=x or z=y

Saying there are 802 different <u>Pokemon</u> is hard! Direct use of FOL is not for everything!

Translating English to FOL

What do these mean?

• You can fool *some of* the people *all of* the time

• You can fool all of the people some of the time

Translating English to FOL

What do these mean?

Both English statements are ambiguous

• You can fool *some of* the people *all of* the time

#1 There is a nonempty subset of people so easily fooled that you can fool that subset every time*

- #2 For any given time, there is a non-empty subset at that time that you can fool
- You can fool *all of* the people *some of* the time #1 There are one or more times when it's possible to
 - fool everyone*
 - #2 Each individual can be fooled at some point in time

* Most common interpretation, I think

Some terms we will need

• person(x): True iff x is a person

- •time(t): True iff t is a point in time
- canFool(x, t): True iff x can be fooled at time t

Note: *iff* = *if* and only *if* =
$$\Leftrightarrow$$

Translating English to FOL

You can fool *some of* the people *all of* the time

- **#1** There is a nonempty group of people so easily fooled that you can fool that group every time*
- ≡ There's (at least) one person you can fool every time
- $\exists \mathbf{x} \forall \mathbf{t} \text{ person}(\mathbf{x}) \land \text{time}(\mathbf{t}) \rightarrow \text{canFool}(\mathbf{x}, \mathbf{t})$
- **#2** For any given time, there is a non-empty group at that time that you can fool
- ≡ For every time, there's a person at that time that you can fool
- $\forall \mathbf{t} \exists \mathbf{x} \text{ person}(\mathbf{x}) \land \text{time}(\mathbf{t}) \rightarrow \text{canFool}(\mathbf{x}, \mathbf{t})$

* Most common interpretation, I think

Translating English to FOL

You can fool *all of* the people *some of* the time

- **#1** There's at least one time when you can fool everyone*
- $\exists t \forall x time(t) \land person(x) \rightarrow canFool(x, t)$
- **#2** Everybody can be fooled at some point in time $\forall x \exists t \text{ person}(x) \land time(t) \rightarrow canFool(x, t)$

* Most common interpretation, I think

Representation Design

- Many options for representing even a simple fact, e.g., something's color as red, green or blue, e.g.:
 - green(kermit)
 - color(kermit, green)
 - hasProperty(kermit, color, green)
- Choice can influence how easy it is to use
- Last option of representing properties & relations as <u>triples</u> used by modern <u>knowledge graphs</u>
 - Easy to ask: What color is Kermit? What are Kermit's properties?, What green things are there? What properties are there? What thinks Tell me everything you know, ...

Simple genealogy KB in FOL

Design a knowledge base using FOL that

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Defines more complex relations (ancestors, relatives)
- Detect inconsistencies, e.g., a person is her own parent
- Infers relations, e.g., grandparent from parent
- Answers queries about relationships between people

How do we approach this?

- Design an initial ontology of types, e.g.
 - -person, animal, man, woman, ...
- Types form a <u>taxonomy</u> or lattice*, e.g.
 - -person(X) <=> man(X) \v woman(Y)
 - $-man(X) \leq person(X) \land male(X)$
 - -woman(X) <=> person(X) ∧ female(X)
 - -female(X) <=> ~ male(X)
- Make assertions about individuals, e.g.
 - -man(donaldTrump)
 - -woman(melaniaTrump)
- * In a <u>lattice</u>, objects can have multiple immediate types

thing

person

man

dt

animal

male

woman

mt

female

Extend with relations and constraints

- Simple two argument relations, e.g.
 - spouse, has_child, has_parent
- Add general constraints to relations, e.g.

- spouse(X,Y) $= > \sim (X = Y)$

- spouse(X,Y) => person(X) \land person(Y)
- spouse(X,Y) => $(man(X) \land woman(Y)) \lor$ $(woman(X) \land man(Y))^*$
- Add FOL sentences for inference, e.g.
 spouse(X,Y) ⇔ spouse(Y,X)
- Add instance data
 - e.g., spouse(djt, mt)
 - * Note this constraint is a traditional one than no longer holds

Example: A simple genealogy KB in FOL

Predicates:

- -parent(X, Y), child(X, Y), father(X, Y), daughter(X, Y), etc.
- spouse(X, Y), husband(X, Y), wife(X,Y)
- -ancestor(X, Y), descendant(X, Y)
- -male(X), female(Y)
- relative(X, Y)

Facts:

- -husband(joe, mary), son(fred, joe)
- spouse(john, nancy), male(john), son(mark, nancy)
- father(jack, nancy), daughter(linda, jack)
- -daughter(liz, linda)
- –etc.

Example Axioms

- $(\forall X,y) \text{ parent}(X, Y) \leftrightarrow \text{child}(Y, X)$
- $(\forall X, Y)$ father(X, Y) \leftrightarrow parent(X, Y) \land male(X) $(\forall X, Y)$ mother(X, Y) \leftrightarrow parent(X, Y) \land female(X)
- $(\forall X, Y)$ daughter(X, Y) \leftrightarrow child(X, Y) \land female(X) $(\forall X, Y)$ son(X, Y) \leftrightarrow child(X, Y) \land male(X)
- $(\forall X, Y)$ husband $(X, Y) \leftrightarrow$ spouse $(X, Y) \land$ male(X) $(\forall X, Y)$ spouse $(X, Y) \leftrightarrow$ spouse(Y, X)

Axioms, definitions and theorems

- Axioms: facts and rules that capture (important) facts
 & concepts in a domain; used to prove theorems
- Mathematicians dislike unnecessary (dependent) axioms, i.e., ones that can be derived from others
- Dependent axioms can make reasoning faster, however
- Choosing a good set of axioms is a design problem
- A definition of a predicate is of the form "p(X) ↔ …" and can be decomposed into two parts
 - Necessary description: " $p(X) \rightarrow ...$ "
 - Sufficient description " $p(X) \leftarrow ...$ "
 - Some concepts have definitions (e.g., triangle) and some don't (e.g., person)

More on definitions

Example: define father(x, Y) by parent(X, Y) & male(X)

 parent(X, Y) is a necessary (but not sufficient) description of father(X, Y)

father(X, Y) \rightarrow parent(X, Y)

 parent(X, Y) ^ male(X) ^ age(X, 35) is a sufficient (but not necessary) description of father(X, Y):

father(X, Y) \leftarrow parent(X, Y) ^ male(X) ^ age(X, 35)

 parent(X, Y) ^ male(X) is a necessary and sufficient description of father(X, Y)

parent(X, Y) \land male(X) \leftrightarrow father(X, Y)

Necessary and sufficient descriptions are definitions

Higher-order logic

- FOL only lets us quantify over variables, and variables can only range over objects
- HOL allows us to quantify over relations, e.g.
 - "two functions are equal iff they produce the same value for all arguments"

 $\forall f \forall g (f = g) \leftrightarrow (\forall x f(x) = g(x))$

- E.g.: (quantify over predicates) $\forall r \text{ transitive}(r) \rightarrow (\forall xyz) r(x,y) \land r(y,z) \rightarrow r(x,z))$
- More expressive, but reasoning is undecideable, in general

Examples of FOL in use

- Semantics of W3C's <u>Semantic Web</u> stack (RDF, RDFS, OWL) is defined in FOL
- <u>OWL</u> Full is equivalent to FOL
- Other OWL profiles support a subset of FOL and are more efficient
- FOL oriented knowledge representation systems have many user friendly tools
- E.g.: Protégé for creating, editing and exploring OWL ontologies

Examples of FOL in use

Many practical approaches embrace the approach that "some data is better than none"

- The semantics of <u>schema.org</u> is only defined in natural language text
- <u>Wikidata</u>'s knowledge graph has a rich schema
 - Many constraint/logical violations are flagged with warnings
 - However, not all, see this <u>Wikidata query</u> that finds people who are their own grandfather

Wikidata knowledge graph

- Community knowledge graph with ~1B statements about ~100M items
- Fine-grained ontology has ~2M types & ~9K properties
- Multilingual: all text values tagged with language id
- Has both a human and query interface
- Many community tools for editing, search, visualization, update

Huge Ontology

How can we understand an ontology with more than two million types?

wdtaxonomy is a useful tool for exploring the ontology

Given a type (e.g, Q3918, university) you can

quickly see

- Subtypes or supertypes (immediate or inferred),
- Number of instances (immediate or inferred),

Direct instances

Number Wikimedia sites it's in

Implemented in javascript with a command line script

\$\$ wdtaxonomy Q3918 -c -t university (Q3918) •163 ×15380 ↑↑ └──Universities in Germany (Q212462) •2 -National University (Q366354) •5 Imperial universities of Japan (0562092) •12 Byzantine university (0622870) •4 └──college and university rankings (Q847843) •23 ×45 ↑ — public university (Q875538) •39 ×974 ↑ private university (0902104) •32 ×846 ↑ —new university (Q987075) •4 ×1 -Red brick university (Q1202123) •11 institute of technology (Q1371037) •20 ×325 veterinary medicine school (Q1384955) •5 ×28 ← online university (Q1407393) •4 ×10 \uparrow --virtual university (01755248) •8 ×11 └──online university (Q1407393) •4 ×10 ↑ ... -comprehensive university (01767829) •2 ×6 -plate glass university (Q1902446) •8 \vdash medical university (Q1916585) •1 ×9 \uparrow ⊢_??? (Q2073922) •1 pontifical university (Q2120466) •18 ×37 ↑↑ Corporate university (Q2278672) •6 -ancient university (Q2667285) •9 ×1 -central university (Q3351682) •12 ×2 └──collegiate university (Q3354859) •9 ×12 deemed university (Q3520135) •6 ×16 → university in France (Q3551775) •3 \times 75 \uparrow └──Istituto superiore per le industrie artistiche (03803831) •2 ×4 ├---??? (Q3803846) •1 ×2 ----Smolny Institute for Noble Maidens (Q4432880) •1 ⊢_??? (Q4475845) •2 ├──federal university (Q4481793) •3 ×3 ecclesiastical university (Q5332280) •6 ×2 └──labor universities (Q5690751) •1 ×6 ← open university (Q6755402) •4 ×1 └──Urban university (Q7900184) •2 international university (Q10829188) •3 ×9 -autonomous university (Q11057861) •2 ×1 -research university (Q15936437) •9 ×224 └──Italian universities (Q20009854) •2 ├---??? (Q20052016) •1 ×2 —Canciller de Universidad (Q21547263) imperial university of the Russian Empire (Q28667313) •2 ×12 —universities in China (Q28700403) •1 └──Institute of National Importance (Q47531586) ×1 ↑ └──campusuniversity (Q59537665) ×3 ——Indiana University Department of French and Italian (Q63441251) Indiana University Bloomington Department of History (063441447)

Virtual assistants and Infoboxes

- Web search engines and virtual assistants like Alexa use custom knowledge graphs to
 - help understand queries and content of web pages & documents
 - Answer questions
 - Show infoboxes
- Wikidata shares roots with these
- All draw on the similar knowledge, like the ~300 Wikipedia & Wikimedia sites

Virtual assistants & search engines

FOL Summary

- First order logic (FOL) introduces predicates, functions and quantifiers
- More expressive, but reasoning more complex
 - Reasoning in propositional logic is NP hard, FOL is semidecidable
- Common AI knowledge representation language
 - Other KR languages (e.g., <u>OWL</u>) are often defined by mapping them to FOL
- FOL variables range over objects
 - HOL variables range over functions, predicates or sentences
- Some practical systems avoid enforcing rigid FOL constraints due to having noisy data

