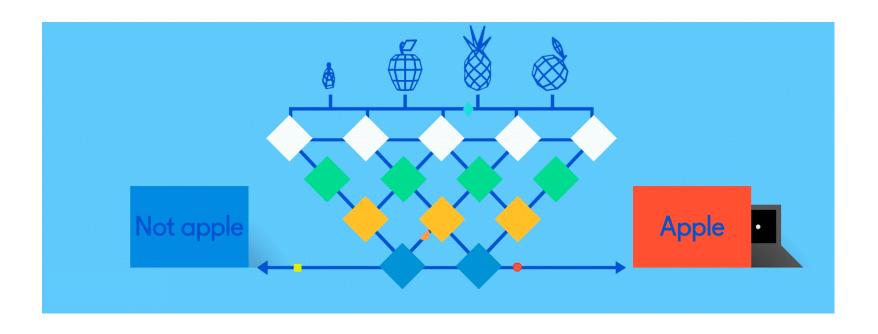
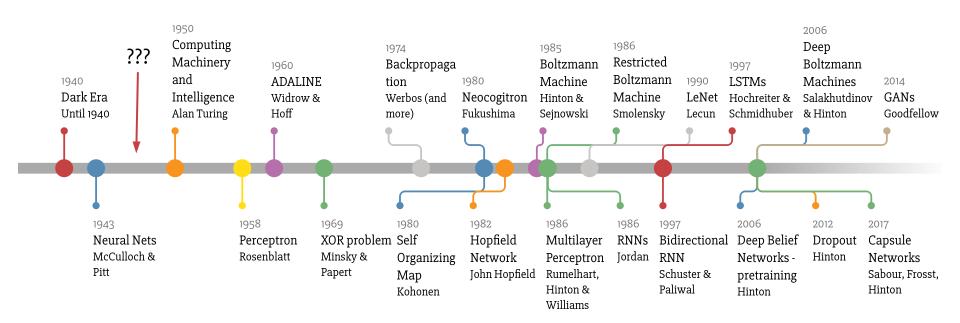
Neural Networks for Machine Learning History and Concepts



Overview

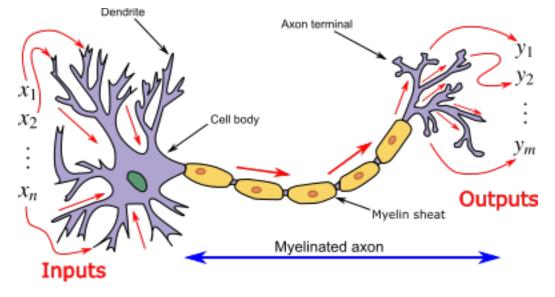
- The neural network computing model has a long history
- Evolved over 75 years to solve its inherent problems, becoming thje dominant model for machine learning in the 2010s
- Neural network models typically give better results than all earlier ML models
- But they are expensive to train and apply
- The field is still evolving rapidly

Deep Learning Timeline



Made by Favio Vázquez

How do animal brains work?

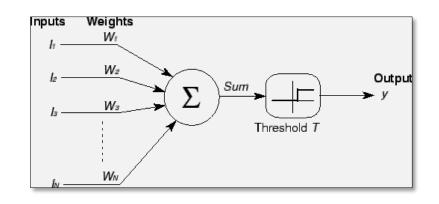


Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals

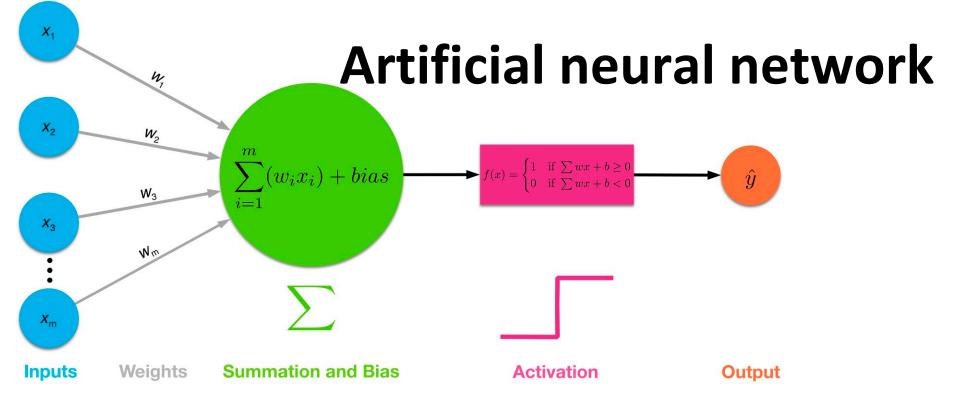
Neurons have body, axon and many dendrites

- In one of two states: firing and rest
- They fire if total incoming stimulus > threshold
- Synapse: thin gap between axon of one neuron and dendrite of another
 - Signal exchange

McCulloch & Pitts



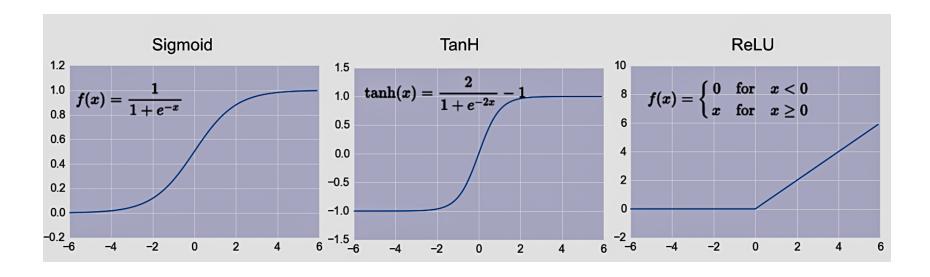
- First mathematical model of biological neurons, 1943
- All Boolean operations can be implemented by these neuron-like nodes
- Competitor to Von Neumann model for general purpose computing device
- Origin of automata theory



- Model still used today!
- Set of nodes with inputs and outputs
- Node performs computation via an activation function
- Weighted connections between nodes
- Connectivity gives network architecture
- NN computations depend on connections, weights, and activation function

Common <u>Activation Functions</u>

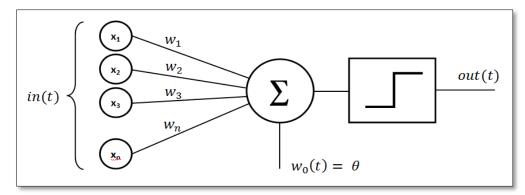
defines the output of that node given an input



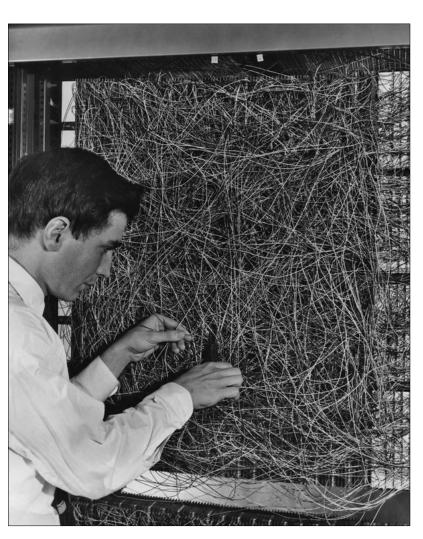
Choice of activation function depends on problem and available computational power

Rosenblatt's perceptron (1958-60)

- Single layer network of nodes
- Real valued weights +/-
- Supervised learning using a simple learning rule

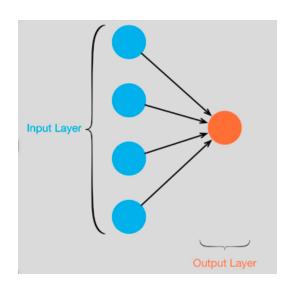


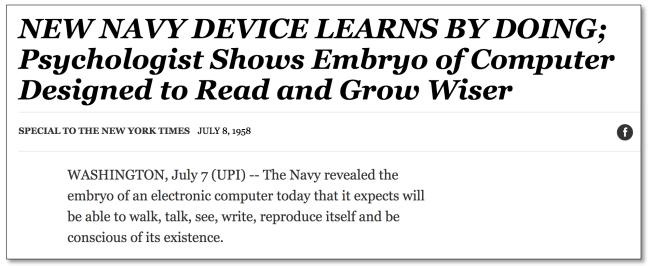
- Essentially a linear classifier
- Widrow & Hoff (1960-62) added better learning rule using gradient descent



Mark 1 perceptron computer, Cornell Aeronautical Lab, 1960

Single Layer Perceptron

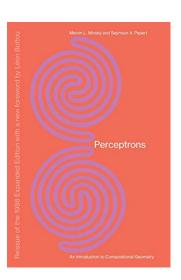




- See the full 1958 NYT article above <u>here</u>
- Rosenblatt: it can learn to compute functions by learning weights on inputs from examples

Setback in mid 60s – late 70s

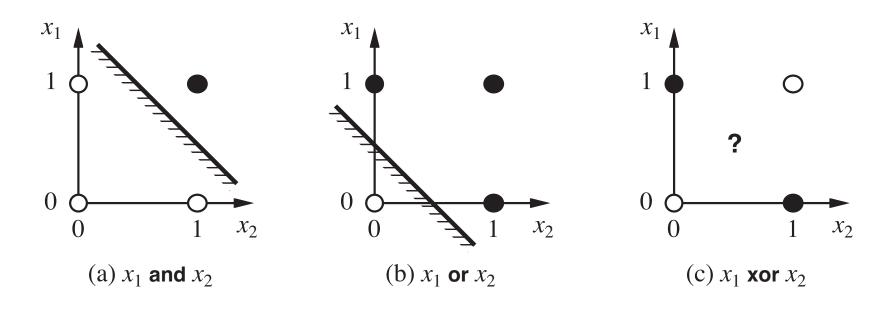
- Perceptrons, Minsky and Papert, 1969
- Described serious problems with perceptron model



- Single-layer perceptrons cannot represent (learn) simple functions that are not linearly separable, such as XOR
- Multi-layers of non-linear units may have greater power but there is no learning rule for such nets
- Scaling problem: connection weights may grow infinitely
- First two problems overcame by latter effort in 80s, but scaling problem persists
- Death of Rosenblatt (1964)
- Al focused on programming intelligent systems on tradional von Neuman computers

Not with a perceptron 😊

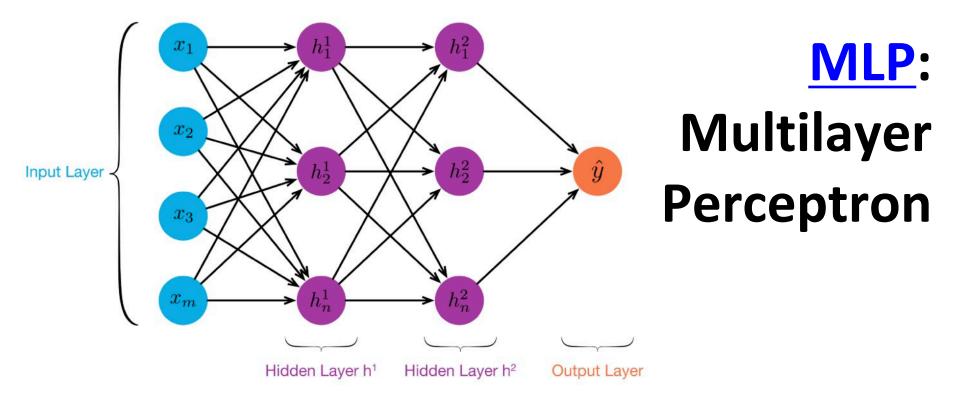
Consider Boolean operators (and, or, xor) with four possible inputs: 00 01 10 11



Training examples are not linearly separable for one case: *sum=1 iff x1 xor x2*

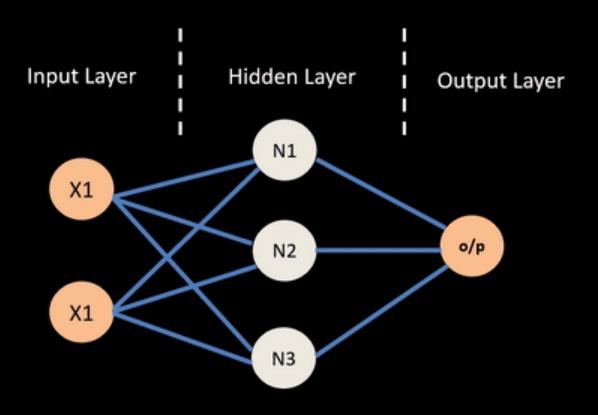
Renewed enthusiasm 80s

- Use multi-layer perceptron
- <u>Backpropagation</u> for multi-layer feed forward nets, with non-linear, differentiable node functions
 - Rumelhart, Hinton, Williams, <u>Learning representations by back-propagating errors</u>, Nature, 1986.
- Other ideas:
 - Thermodynamic models (Hopfield net, Boltzmann machine ...)
 - Unsupervised learning
- Applications to character recognition, speech recognition, text-to-speech, etc.



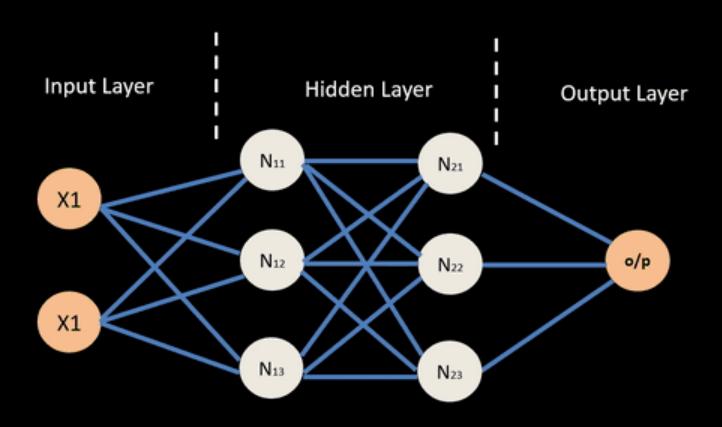
- ≥ 1 "hidden layers" between inputs & output
- Can compute non-linear functions (why?)
- Training: adjust weights slightly to reduce error between output y and target value t; repeat
- Introduced in 1980s, still used today

Feed Forward Neural Network



Information flows in forward direction only

Neural Network - Backpropagation



But problems remain...

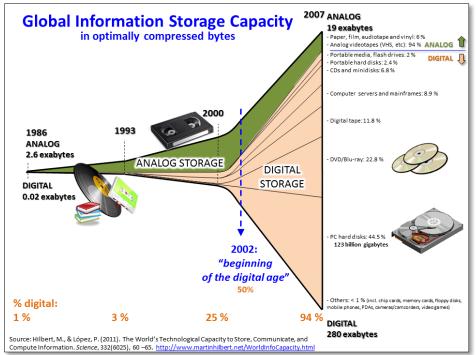
- It's often the case that solving a problem just reveals a new one that needs solving
- For a large MLPs, backpropagation takes forever to converge!
- Two issues:
 - Not enough compute power to train the model
 - -Not enough labeled data to train the neural net
- SVMs dominate, since they converge to global optimum in O(n^2)

GPUs solve compute power problem

- Fps 248
- GPUs (Graphical Processing Units) became popular in the 1990s to handle computing needed for better computer graphics
- GPUs are <u>SIMD</u> (single instruction, multiple data) processors
- Cheap, fast, and easy to program
- GPUs can do matrix multiplication vary fast

Need lots of data!

- 2000s introduced big data
- Cheaper storage
- Parallel processing
 (e.g., MapReduce, Hadoop, Spark)
- Data sharing via the Web

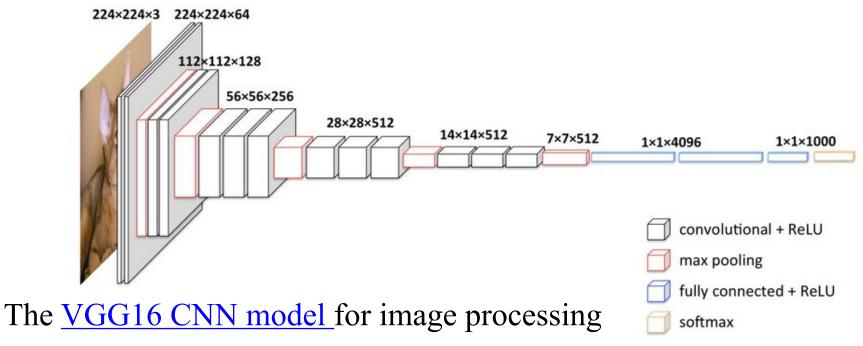


New problems are surfaced

- 2010s was a decade of domain applications
- These came with new problems, e.g.,
 - Images are too high dimensional!
 - Variable-length problems cause gradient problems
 - Training data is rarely labeled
 - Neural nets are uninterpretable
 - Training complex models required days or weeks
- This led to many new "deep learning" neural network models

Deep Learning

- Deep learning refers to models going beyond simple feed-forward multi-level perceptron
 - -Though it was used in a ML context as early as 1986
- "deep" refers to the models having many layers (e.g., 10-20) that do different things



Neural Network Architectures

Current focus on large networks with different "architectures" suited for different kinds of tasks

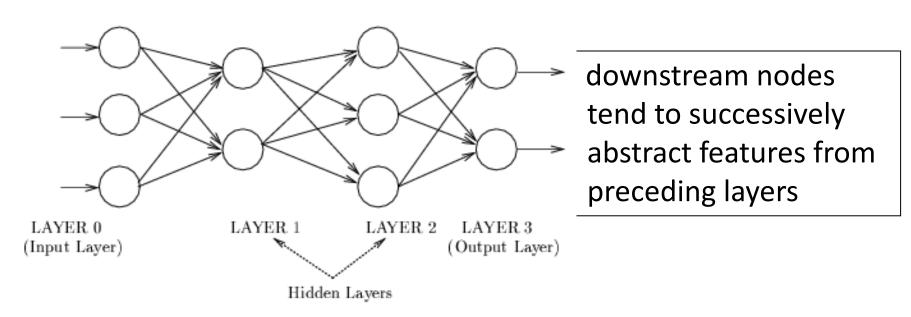
- Feedforward Neural Network
- CNN: Convolutional Neural Network
- RNN: Recurrent Neural Network
- LSTM: Long Short Term Memory
- GAN: Generative Adversarial Network
- Transformers

Feedforward Neural Network

Connections allowed from a node in layer i only to nodes in layer i+1

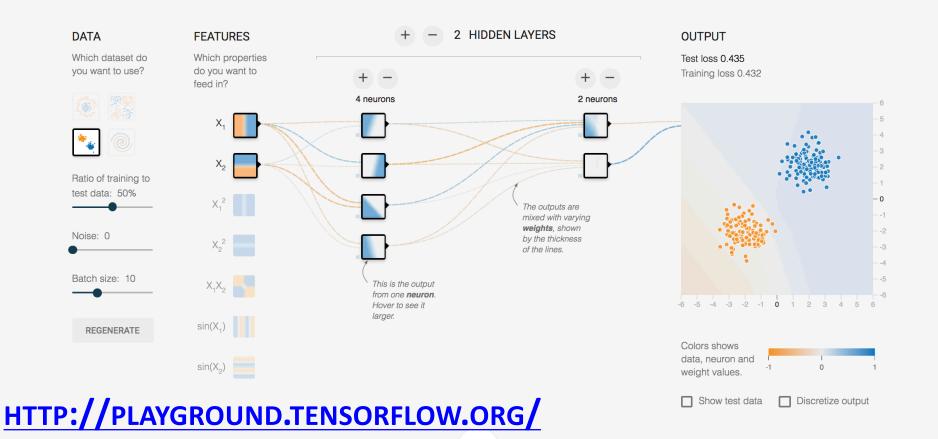
i.e., no cycles or loops

• Simple, widely used architecture.

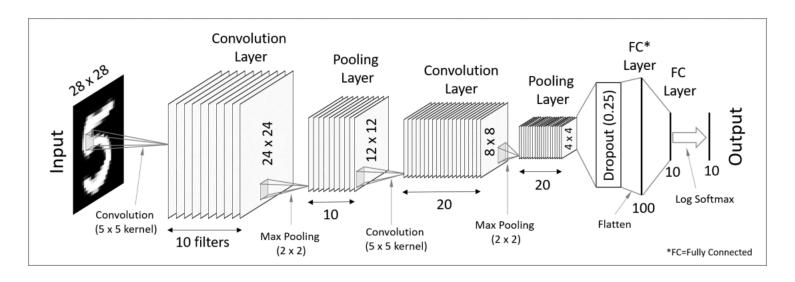


HTTP://PLAYGROUND.TENSORFLOW.ORG/

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.



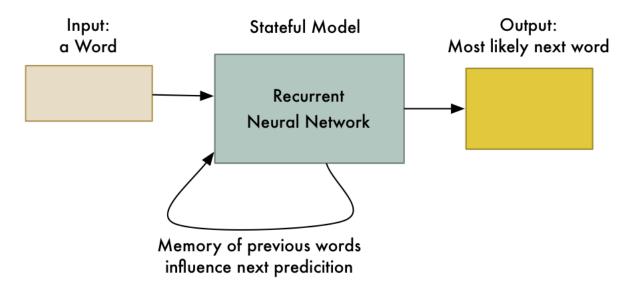
CNN: Convolutional Neural Network



- Good for image processing: classification, object recognition, automobile lane tracking, etc.
- Classic demo: learn to recognize hand-written digits from <u>MNIST</u> data with 70K examples

RNN: Recurrent Neural Networks

- Good for learning over sequences of data,
 e.g., a sentence orf words
- LSTM (Long Short Term Memory) a popular architecture



Output so far:

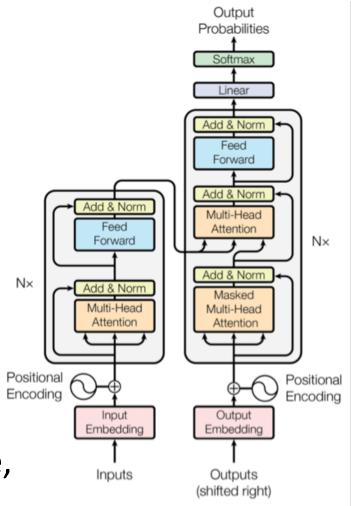
Machine

GAN: Generative Adversarial Network

- System of two neural networks competing against each other in a zero-sum game framework.
- Provides a kind of unsupervised learning that improves the network
- Introduced by Ian Goodfellow et al. in 2014
- Can learn to draw samples from a model that is similar to data that we give them

Transformer

- Introduced in 2017
- Used primarily for natural language processing tasks
- NLP applications "transform" an input text into an output text
 - E.g., translation, text summarization, question answering
- Uses encoder-decoder architecture
- Popular pretrainted models available,
 e.g. <u>BERT</u> and <u>GPT</u>

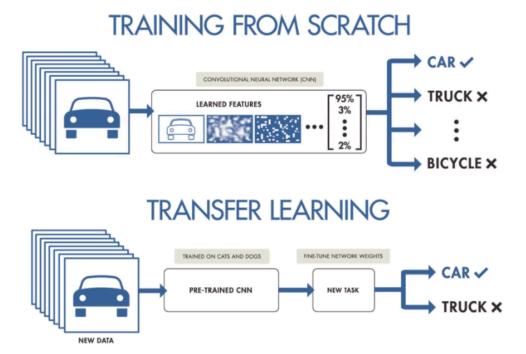


Deep Learning Frameworks

- Popular open source deep learning frameworks use Python at top-level; C++ in backend
 - —<u>TensorFlow</u> (via Google)
 - —<u>PyTorch</u> (via Facebook)
 - -MxNet (Apache)
 - -<u>Caffe</u> (Berkeley)
- Keras: popular API works with the first two and provides good support at architecture level

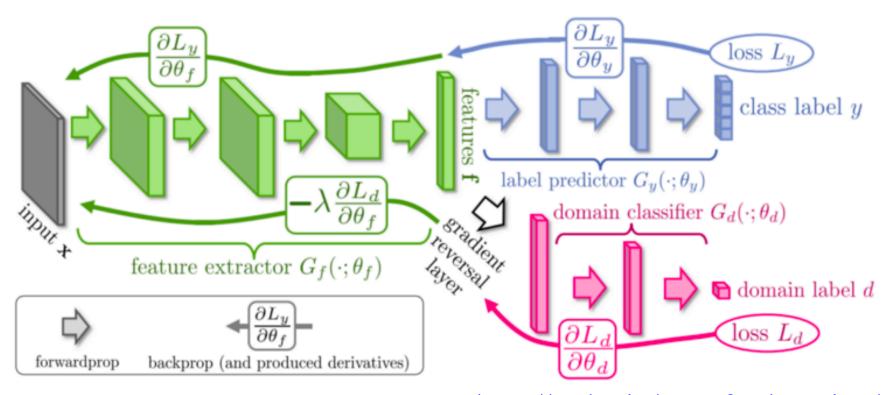
Good at Transfer Learning

- Neural networks effective for <u>transfer learning</u>
 Using parts of a model trained on a task as an initial model to train on a different task
- Particularly effective for image recognition



Good at Transfer Learning

- For images, the initial stages of a model learn highlevel visual features (lines, edges) from pixels
- Final stages predict task-specific labels



Fine Tuning a NN Model

- Special kind of transfer learning
 - Start with a pre-trained model
 - Replace last output layer with a new one
 - Fix all but last layer by marking as trainable:false
- Retraining on new task and data very fast
 - Only the weights for the last layer are adjusted
- Example
 - Start: NN to classify animal pix with 100s of categories
 - Finetune on new task to classify pix of 15 common pets

Conclusions

- Quick introduction to neural networks and deep learning
- Learn more by
 - -Take UMBC's CMSC 478 machine learning class
 - -Try scikit-learn's neural network models
 - Explore Google's <u>Machine Learning Crash Course</u>
 - -Try Miner/Kasch tutorial on applied deep learning
 - Work through examples
- and then try your own project idea