Constraint Satisfaction

Russell & Norvig Ch. 5

Overview

- Constraint satisfaction offers a powerful problem-solving paradigm
 - View a problem as a set of variables to which we have to assign values that satisfy a number of problem-specific constraints.
 - Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
 - Backtracking (systematic search)
 - Constraint propagation (k-consistency)
 - Variable and value ordering heuristics
 - Backjumping and dependency-directed backtracking

Motivating example: 8 Queens

Place 8 queens on a chess board such that none is attacking another.

Generate-and-test, with no redundancies \(\rightarrow \) “only” \(8^8\) combinations
What more do we need for 8 queens?

• Not just a successor function and goal test
• But also
 – a means to propagate constraints imposed by one queen on the others
 – an early failure test
 → Explicit representation of constraints and constraint manipulation algorithms

Informal definition of CSP

• CSP = Constraint Satisfaction Problem, given
 (1) a finite set of variables
 (2) each with a domain of possible values (often finite)
 (3) a set of constraints that limit the values the variables can take on
• A solution is an assignment of a value to each variable such that the constraints are all satisfied.
• Tasks might be to decide if a solution exists, to find a solution, to find all solutions, or to find the “best solution” according to some metric (objective function).

Example: 8-Queens Problem

• 8 variables Xi, i = 1 to 8 where Xi is the row number of queen in column i.
• Domain for each variable \{1,2,...,8\}
• Constraints are of the forms:
 – Xi = k → Xj ≠ k for all j = 1 to 8, j ≠ i
 – Xi = ki, Xj = kj → |i-j| ≠ |ki - kj| for all j = 1 to 8, j ≠ i

Example: Task Scheduling

Examples of scheduling constraints:
• T1 must be done during T3
• T2 must be achieved before T1 starts
• T2 must overlap with T3
• T4 must start after T1 is complete
Example: Map coloring

Color the following map using three colors (red, green, blue) such that no two adjacent regions have the same color.

```
  E
 D  A  B
 C
```

Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = {red, green, blue}
- Constraints: A ≠ B, A ≠ C, A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
- A solution: A = red, B = green, C = blue, D = green, E = blue

Brute Force methods

- Finding a solution by a brute force search is easy
 - Generate and test is a weak method
 - Just generate potential combinations and test each
- Potentially very inefficient
 - With n variables where each can have one of 3 values, there are 3^n possible solutions to check
- There are ~190 countries in the world, which we can color using four colors
 - 4^{190} is a big number!

Example: SATisfiability

- Given a set of propositions containing variables, find an assignment of the variables to {false, true} that satisfies them.
- For example, the clauses:
 - $(A \lor B \lor \neg C) \land (\neg A \lor D)$
 - (equivalent to $(C \rightarrow A) \lor (B \land D \rightarrow A)$
- are satisfied by
 - $A = $ false, $B = $ true, $C = $ false, $D = $ false
- 3SAT is known to be NP-complete; in the worst case, solving CSP problems requires exponential time
Real-world problems
CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Definition of a constraint network (CN)
A constraint network (CN) consists of
• a set of variables \(X = \{x_1, x_2, \ldots, x_n\} \)
 - each with associated domain of values \(\{d_1, d_2, \ldots, d_n\} \).
 - the domains are typically finite
• a set of constraints \(\{c_1, c_2, \ldots, c_m\} \) where
 - each defines a predicate which is a relation over a particular subset of \(X \).
 - e.g., \(C_i \) involves variables \(\{X_{i_1}, X_{i_2}, \ldots, X_{i_k}\} \) and defines the relation \(R_i \subseteq D_{i_1} \times D_{i_2} \times \ldots \times D_{i_k} \)

Unary and binary constraints most common
Binary constraints

- Two variables are adjacent or neighbors if they are connected by an edge or an arc
- It's possible to rewrite problems with higher-order constraints as ones with just binary constraints

Formal definition of a CN
• Instantiations
 - An instantiation of a subset of variables \(S \) is an assignment of a value in its domain to each variable in \(S \)
 - An instantiation is legal iff it does not violate any constraints.
• A solution is an instantiation of all of the variables in the network.
Typical tasks for CSP

• Solutions:
 – Does a solution exist?
 – Find one solution
 – Find all solutions
 – Given a metric on solutions, find the best one
 – Given a partial instantiation, do any of the above

• Transform the CN into an equivalent CN that is easier to solve.

Binary CSP

• A binary CSP is a CSP where all constraints are binary or unary
• Any non-binary CSP can be converted into a binary CSP by introducing additional variables
• A binary CSP can be represented as a constraint graph, which has a node for each variable and an arc between two nodes if and only there is a constraint involving the two variables
 – Unary constraints appear as self-referential arcs

A running example: coloring Australia

• Seven variables \{WA, NT, SA, Q, NSW, V, T\}
• Each variable has the same domain \{red, green, blue\}
• No two adjacent variables have the same value:
 \(WA \neq NT, WA \neq SA, NT \neq SA, NT \neq Q, SA \neq Q, SA \neq NSW, SA \neq V, Q \neq NSW, NSW \neq V\)

• Solutions are complete and consistent assignments
• One of several solutions
• Note that for generality, constraints can be expressed as relations, e.g., \(WA \neq NT\) is
 \[(WA,NT) \in \{(red,green), (red,blue), (green,red), (green,blue), (blue,red), (blue,green)\}\]
Basic Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)
– If a is complete then return a
– X \leftarrow select an unassigned variable
– D \leftarrow select an ordering for the domain of X
– For each value v in D do
 – If v is consistent with a then
 – Add (X= v) to a
 – result \leftarrow CSP-BACKTRACKING(a)
 – If result \neq failure then return result
 – Remove (X= v) from a
– Return failure

Start with CSP-BACKTRACKING({})
Note: this is depth first search; can solve n-queens problems for n \sim 25

Problems with backtracking

• Thrashing: keep repeating the same failed variable assignments
 – Consistency checking can help
 – Intelligent backtracking schemes can also help
• Inefficiency: can explore areas of the search space that aren’t likely to succeed
 – Variable ordering can help

Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking
– Can we detect inevitable failure early?
– Which variable should be assigned next?
– In what order should its values be tried?

Forward Checking

After a variable X is assigned a value v, look at each unassigned variable Y connected to X by a constraint and delete from Y’s domain values inconsistent with v

Using forward checking and backward checking roughly doubles the size of N-queens problems that can be practically solved
Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures.
- NT and SA cannot both be blue!

Definition: Arc consistency

- A constraint C_{xy} is said to be arc consistent wrt x if for each value v of x there is an allowed value of y
- Similarly, we define that C_{xy} is arc consistent wrt y
- A binary CSP is arc consistent iff every constraint C_{xy} is arc consistent wrt x as well as y
- When a CSP is not arc consistent, we can make it arc consistent, e.g. by using AC3
 - This is also called “enforcing arc consistency”

Arc Consistency Example

- Domains
 - $D_x = \{1, 2, 3\}$
 - $D_y = \{3, 4, 5, 6\}$
- Constraint
 - $C_{xy} = \{(1,3), (1,5), (3,3), (3,6)\}$
 - C_{xy} is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains
 - $D'_x = \{1, 3\}$
 - $D'_y = \{3, 5, 6\}$

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency

- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

General CP for Binary Constraints

Algorithm AC3
- contradiction \leftarrow false
- $Q \leftarrow$ stack of all variables
- while Q is not empty and not contradiction do
 - $X \leftarrow$ UNSTACK(Q)
 - For every variable Y adjacent to X do
 - If REMOVE-ARC-INCONSISTENCIES(X,Y) then
 - If Y’s domain is non-empty then STACK(Y,Q)
 - Else return false
Complexity of AC3

- $e =$ number of constraints (edges)
- $d =$ number of values per variable
- Each variable is inserted in Q up to d times
- REMOVE-ARC-CONSISTENCY takes $O(d^2)$ time
- CP takes $O(ed^3)$ time

Improving backtracking efficiency

- Here are some standard techniques to improve the efficiency of backtracking
 - Can we detect inevitable failure early?
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000 N-queen puzzles feasible

Most constrained variable

- Most constrained variable: choose the variable with the fewest legal values
- a.k.a. minimum remaining values (MRV) heuristic

Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose variable involved in largest # of constraints on remaining variables
Least constraining value

• Given a variable, choose least constraining value:
 – the one that rules out the fewest values in the remaining variables

• Combining these heuristics makes 1000 queens feasible

Solving a CSP still requires search

• Search:
 – can find good solutions, but must examine non-solutions along the way

• Constraint Propagation:
 – can rule out non-solutions, but this is not the same as finding solutions

• Interweave constraint propagation & search:
 – Perform constraint propagation at each search step
X2 = 3 eliminates { X3 = 2, X3 = 3, X3 = 4 }
⇒ inconsistent!

X2 = 4 ⇒ X3 = 2, which eliminates { X4 = 2, X4 = 3}
⇒ inconsistent!
4-Queens Problem

\[X_1 = \{1,2,3,4\} \]
\[X_2 = \{\ , \ , \ , 4\} \]
\[X_3 = \{\ ,2, \ , \} \]
\[X_4 = \{\ ,\ , \ , \} \]

4-Queens Problem

\[X_1 = \{1,2,3,4\} \]
\[X_2 = \{\ , \ , \ , 4\} \]
\[X_3 = \{\ ,\ , \ , \} \]
\[X_4 = \{\ ,\ ,\ ,\} \]

\[X_3 = 2 \] eliminates \(\{ X_4 = 2, X_4 = 3 \} \)
\[\Rightarrow \text{inconsistent!} \]
How can we set this up as a CSP?
Local search for constraint problems

• Remember local search?
• A version of local search exists for constraint problems
• Basic idea:
 – generate a random “solution”
 – Use metric of “number of conflicts”
 – Modifying solution by reassigning one variable at a time to decrease metric until a solution is found or no modification improves it
• Has all the features and problems of local search

Basic Local Search Algorithm

Assign a domain value d_i to each variable v_i
while no solution & not stuck & not timed out:
 bestCost $\leftarrow \infty$; bestList $\leftarrow \emptyset$;
 for each variable v_i | Cost(Value(v_i)) > 0
 for each domain value d_i of v_i
 if Cost(d_i) < bestCost
 bestCost \leftarrow Cost(d_i); bestList \leftarrow d_i;
 else if Cost(d_i) = bestCost
 bestList \leftarrow bestList \cup d_i
 Take a randomly selected move from bestList

Min Conflict Example

• States: 4 Queens, 1 per column
• Operators: Move queen in its column
• Goal test: No attacks
• Evaluation metric: Total number of attacks

Eight Queens using Backtracking

Undo move for Queen 7 and so on...
Eight Queens using Local Search

Answer Found

Backtracking Performance

Local Search Performance

Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- For example, it’s been shown to solve arbitrary size (in the millions) N-Queens problems in constant time.
- This appears to hold for arbitrary CSPs with the caveat…
Min Conflict Performance
Excerpt in a certain critical range of the ratio constraints to variables.

Famous example: labeling line drawings
- Waltz labeling algorithm – earliest AI CSP application
 - Convex interior lines are labeled as +
 - Concave interior lines are labeled as –
 - Boundary lines are labeled as
- There are 208 labeling (most of which are impossible)
- Here are the 18 legal labeling:

Labeling line drawings II
- Here are some illegal labelings:

Labeling line drawings
Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

A solution for one labeling problem
A labeling problem with no solution
K-consistency

- K-consistency generalizes arc consistency to sets of more than two variables.
 - A graph is K-consistent if, for legal values of any K-1 variables in the graph, and for any Kth variable \(V_k \), there is a legal value for \(V_k \).
- Strong K-consistency = J-consistency for all \(J \leq K \)
- Node consistency = strong 1-consistency
- Arc consistency = strong 2-consistency
- Path consistency = strong 3-consistency

Why do we care?

1. If we have a CSP with N variables that is known to be **strongly N-consistent**, we can solve it **without backtracking**
2. For any CSP that is **strongly K-consistent**, if we find an appropriate variable ordering (one with “small enough” branching factor), we can solve the CSP **without backtracking**

Intelligent backtracking

- **Backjumping**: if \(V_j \) fails, jump back to the variable \(V_i \) with greatest \(i \) such that the constraint \((V_i, V_j)\) fails (i.e., most recently instantiated variable in conflict with \(V_i \))
- **Backchecking**: keep track of incompatible value assignments computed during backjumping
- **Backmarking**: keep track of which variables led to the incompatible variable assignments for improved backchecking

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
 - Hard vs. soft constraints
 - Degree of constraint satisfaction
 - Cost of violating constraints
- What if constraints are of different forms?
 - Symbolic constraints
 - Numerical constraints [constraint solving]
 - Temporal constraints
 - Mixed constraints
Challenges for constraint reasoning

• What if constraints are represented intensionally?
 – Cost of evaluating constraints (time, memory, resources)

• What if constraints, variables, and/or values change over time?
 – Dynamic constraint networks
 – Temporal constraint networks
 – Constraint repair

• What if you have multiple agents or systems involved in constraint satisfaction?
 – Distributed CSPs
 – Localization techniques