Empire Builder game directions

Part I Overview

The class implementation of Empire Builder is a client-server implementation of a simplified “train game.” This document summarizes (hopefully) everything you will need to know about the system.

All of the code is available at the TA’s website:

 http://userpages.umbc.edu/~yanhao1/cmsc671f03/
One of the students in CMSC 471 last year wrote some visualization code, which I hope to make available to you. This visualization code was based on the “orthogonal” map we used last year, not this year’s “hex” map, so I’m not sure whether it will be completely usable.
Part I A* Search Assignment

For the first assignment (the A* search part of Homework #3), you won’t need to use any of the client-server infrastructure. You’ll only need to load class-defs-temp.lisp, Empire-Builder-temp.lisp, change-log.lisp, and your own A* code. You should then use the function (new-game “simple-map”) to load the game map. (You may want to create a smaller map for testing purposes.)
You should implement a function that takes any two points on the map and uses A* search to find the cheapest path between the two points. You may want to re-use some of the basic search code you wrote for Homework #2, with different operators and queuing function. The cost function that I suggest using (for now) is cost-to-build, but if you want to use a different function, or implement several cost functions, you are welcome to do so.
The first thing you’ll want to check in your function is whether the two points given to the search are legal (accessible) map locations. Every map location is represented by a node instance, of type ‘plain, ‘mountain, ‘city, or ‘invalid-node. All of the nodes are stored in the array *map*. You can get the node associated with an (x,y) location with the function

(aref *map* x y)

The bounding box of the map is (0, 0) to (array-dimensions *map*), so you should check to be sure the two points are within these bounds.
Once you have a valid starting point, you will need to write an expand-node function that, given a node at location (x,y), generates a list of all of the legal neighbor nodes (i.e., nodes to which you can build). You should look at the function build-single-track to see the conditions for a legal build. In particular, you can only build to a node that’s between √2 and 2 units away from the node you’re at. (If you look at the hex map, you’ll see why.) You can’t build along an edge that lies within a city. (The current map doesn’t have any such edges, but you’ll see what this means when we play the board game.) You can’t build a track along a segment that somebody else has already built. (That won’t be an issue for your A* search now, but it will when you write your real system.) You can only build from a city or from a point that you already have track connected to. (Again, that isn’t relevant for the A* assignment.) You can’t build to an invalid node (you can check for ‘invalid-node, or you can use the cost-to-build test used by build-single-track). Finally, you can’t build if you don’t have enough money, but again, that’s not relevant for this assignment.
Once you have the list of legal neighbor nodes, you need to compute the incremental (for this edge) and total (for the path so far) build cost. The cost-to-build function tells you how much it costs to build into each location. Your queueing function should sort according to this total cost.

The goal test should be straightforward.

(Note that edges in the implementation refer to track segments, not edges between neighboring nodes, so there won’t be any edges on the map at this point.)
You should provide a “dribble” log of your search algorithm tested with the following pairs of points:
· (0,0) to (58,20)
· (1,0) to (39,6)

· (5,19) to (55,7)

For each search, you should show (in a reasonably compact form) the number of nodes created and expanded, the CPU time used (you can use the built-in time function to record the CPU time), the path length, and the actual path.
Part I All the files provided
class-defs-temp.lisp: defines all data structures for the Empire Builder game, for both client and server.
Empire-Builder-temp.lisp: does all the real work of game initialization and responds to commands from clients. This file is mainly used by the server. If you are not clear about the game rules, you need to read the code of this file.
Change-log.lisp: all communications between the server and clients are through log file. This file is for server and clients.

Server-network.lisp: The main program of the server. It also defines legal moves, computes cost of building tracks and so on. It provides the interface to the client. This file is for server.

Client-network.lisp: The main program of the client.

Load-server: start engine of the server.

Load-client: start engine of the client.

Simple-game: defines a simple map for the game.

Part II Game rules
· This game can be played by 2-6 players. Players take turns spending money to build track and earning money for delivering goods from cities that produce them to cities that want them along this track.

· Upon joining a game, a player data structure will be created and initialized with $40M. Each player will receive 3 demand cards.

· There are 3 demands per demand card. Each demand specifies a good, a city that wants the good, and an amount that the city will pay upon receiving the good. Once one demand on a card has been used, the card is recycled.

· Playing Board: rectangular grid with (0, 0) in the bottom-left. The board is 21*59. The track can only be built as an edge of a hexagonal on the map.

· The allowed actions are choosing a start location (only on the first turn, build track segments, moving along existing track, loading goods (at cities), and delivering goods (at cities). Unwanted goods can be “delivered,” but the player is only paid if they hold a demand card with a demand for that good at that city.
· Building each segment of track costs from $1M to $5M, depending on the type of the map location being built to.

· City costs $5M

· Mountain costs $2M

· Plain costs $1M

· Track can only be built starting at a city or from existing track.

· There is no cost for moving along a player’s track. It costs $4M/turn to use another player’s track.

· The first player to have $250M wins the game.

Part III Data structures

· Map

The map loaded from a file; a simple map is given in the file simple-game. (Note that the map may change later in the semester, so your code should be general.) Each node on the map is a mountain, a city, a plain, or an invalid (inaccessible) node. The hex map handed out in class shows the “simple-game” map. The vertices of the hexagons and the center points of the hexagons are plains, unless designated by a large dot (mountain) or labeled circle (city). All other points (i.e., the center points along the horizontal edges of the hexagons, and the two off-center points in the middle of each hexagon) are invalid nodes.
The first part of the map file is the dimension of the map.

The second part of the map file is a list of the (x,y) locations of the mountain nodes on the map. If (x1, y1) is defined in this part as a mountain, then (x-1, y), (x, y+1) and (x-1, y+1) are also mountains.

The third part of the map file is a list of the (x,y) locations of the invalid nodes. These invalid nodes take on a regular pattern according to the hex structure of the map: If (x,y) is defined as invalid, then (x-2,y), (x+1,y), (x-1,y-1) and (x-3,y-1) will also be invalid.
The fourth part of the map file defines all the cities, the goods produced in those cities, and the position of the cities on the map in the form of (city-name goods-list (x y)).
All locations that are not defined as mountains or cities are plains.

The fifth part of the map file defines the demands: what goods are needed by each city, and amount for delivery. These demands are in the form of (city-name needed-goods amount)

Here is an example of the map (the game will not necessarily use this map, this is just an example):

(59 21)

((1 4) (1 5) (1 10) (1 11) (2 4) (2 5) (2 14) (3 4) (3 5) (3 14) (4 0)

(4 1) (4 2) (4 3) (4 4) (4 10) (4 11) (4 14) (4 15) (4 16) (5 0) (5 1)

(5 2) (5 3) (5 9) (5 10) (5 11) (5 12) (6 10) (6 11) (8 3) (8 4) (9 2)

(9 3) (10 0) (10 1) (10 10) (10 11) (11 0) (11 1) (11 10) (11 11) (12

10) (12 11))

((C1 (GOLD COAL COPPER) (3 15)) (C2 (COAL NICKEL) (8 12)) (C3 (JADE) (2 2)) (C4 (GOLD NICKEL) (4 8)) (C5 (COAL) (10 8)) (C6 (DIAMOND) (8 1)) (C7 (COAL NICKEL) (11 3)) (C8 (GOLD COPPER) (11 15)) (C9 (NIKEL) (30 18)) (C10 (DIAMOND COAL) (47 17)))

((C1 JADE 15) (C1 DIAMOND 10) (C2 COPPER 3) (C3 GOLD 4) (C3 COAL 2) (C3 NICKEL 1) (C4 JADE 8) (C4 COAL 2) (C5 DIAMOND 7) (C5 COPPER 5) (C6 GOLD 2) (C6 COPPER 7) (C6 JADE 10) (C7 DIAMOND 9) (C8 JADE 12) (C3 COPPER 6))

· All other data structures including nodes, city, plain, mountain, demand, card, edge, and player information are defined in the file “class-defs-temp.lisp”.

Part IV How to load the game
In order to use the network code, each client and server should run in separate processes. These can be running on different machines or in different processes on the same machine. The process is defined as follows:

Server:

1. start clisp

2. Execute (load “load-server”) on the server.
3. Execute (main “simple-game”, port-number) Port-number is a number greater than 1024 but shouldn’t be too high. Simple-game is the map file.
Client:

1. start clisp

2. Execute (load “load-client”)
3. Execute (main “server-hostname” server-port-number “player-name”)
4. Repeat step 1, 2, 3 for each additional client.

The additional terminal:

1. telnet server-hostname server-port-number

2. Enter (start-game) after EMPIRE-BUILDER is printed on the screen to start the game playing.

Part V How to play the game:

When the server receives the (start-game) command from a third-party nonplayer (the additional terminal), the “Registration” phase officially ends, and the “Game Play” phase commences. At this time, the server sends to each registered client a log of all commands that the server executed to initialize the game environment. The client code will recognize the log and automatically process every command in the log, thus initializing the client data structures to exactly the same state as that of the server.

Once this has been completed, the server will begin cycling through each player registered in the game, starting a turn for that player.
When the game first starts, no player has a position on the board, so the first command that each client will receive from the server will be (choose-start). On the client side, the network code will receive this command, and execute the function named choose-start. The choose-start function provided by the client network code simply prompts the user on the terminal to enter a starting location manually (each player will need to override the default choose-start function provided by the network code). The client should return a list in the form (row col).

After the location has been set, the server will never issue the choose-start command again. From that point on, the first command issued to a player at the start of its turn will be choose-build. Once again, each player will need to override the default choose-build function provided by the network code. The command returned by choose-build should be of the form:
• nil
• (upgrade-train)
• ((point sequence 1) (point sequence 2) . . . (point sequence N))
where a point sequence is defined as ((X1 Y1) (X2 Y2)).
The server will return a result list to the client. If the build limit was not reached, the server will send the command (choose-build) to the client after sending the result list.
When the client network code receives the result list, it will call the function process-result and pass the result list as an argument. The player should override the process-result function to do any necessary processing given the information provided by the result list.

The last command issued to each player on their turn is (choose-move). The order of operations for this is the same as for choose-build. The client’s choose-move function should return a set of commands in the form ((command 1 arg1) . . . (command N arg(s) N)) where the commands are:

move-to-point The argument is a list (row col). The return value will be 1 to indicate the player was moved one position, or the symbol ‘INVALID-MOVE if the player could not reach the position given by the argument from the player’s current position.

drop-good The argument is a symbol for the good’s name. The return value is defined by the lisp built-in function remove.

acquire-good The argument is the name of a good. The return value is either INVALID-ACQUISITION or defined by the built-in function push.

make-delivery The arguments are the card-id and the demand-id. The return value is defined by the drop-good function or INVALID-DELIVERY.

The server will return either TOO-MANY-COMMANDS (if the number of commands exceeds the move limit) or the result list from processing each of the commands. If the player has not reached the move limit, the server will issue the command (choose-move) again.

Part VI The main functions that each player will need to write (you will need to override the following default functions in the file client-network.lisp):

· choose-start: to pick a starting location (which must be a city) based on the strategy of the player and the current state of the environment.
The client should return a list in the form (row col). Now the choose-start function provided by the client network code simply prompts the user on the terminal to enter a starting location manually.
If the location returned by the client is a valid starting location, the server will set the player’s location and return the symbol LOCATION-SET.
If the location is not a city on the map, it will return the symbol INVALID-START-LOCATION, and then issue the command choose-start again.

· choose-build: to decide what track to build based on the strategy of the player.
The command returned by choose-build should be one of the forms:

• nil to indicate that the player does not wish to build any more track

• (upgrade-train) may return the symbols INVALID-UPGRADE-TIME or TRAIN-MAXED-OUT or INSUFFICIENT FUNDS

• ((point sequence 1) (point sequence 2) . . . (point sequence N)) where a point sequence is defined as ((X1 Y1) (X2 Y2)). Will return a list of numbers representing the cost of building track for each point sequence.
If an error occurs trying to build a section of track, a symbol representing the error will be placed as the last element of the list and processing of point sequences after the error will not occur. The errors could be INVALID-EDGES, WITHIN-CITY, OWNED, INVALID-START, or INSUFFICIENT-FUNDS.

If the player has reached its build limit, the server will append the symbol BUILD-LIMIT onto the end of the result list to indicate that the player may build any more tracks during that turn. Before the result list is sent to the client, the server will add the symbol BUILD-TURN to the front of the result list to indicate to the client that this list is the results of a build turn. If the build limit was not reached, the server will send the command (choose-build) to the client after sending the result list.
Here is an example:

Start Location: (4 5)

INVALID-START-LOCATION

Start Location: (1 3)

LOCATION-SET

Build Command: (upgrade-train)

(BUILD-TURN 5 BUILD-LIMIT)

Build Command: nil

· process-result: When the client network code receives the result list of the choose-build, it will call the function process-result and pass the result list as an argument. The player should override the process-result function to do any necessary processing given the information provided by the result list.
· Choose-move: To decide where to move based on the strategy of the player.
The client’s choose-move function should return a set of commands in the form ((command 1 arg1) . . . (command N arg(s) N) where the commands are:

move-to-point The argument is a list (row col). Return values could be 1 to indicate the player was moved one position, or INVALID-MOVE if the player could not reach the position given by the argument from the player’s current position.

drop-good The argument is a symbol for the goods’ name. Return value is defined by the lisp built-in function remove.

acquire-good The argument is a goods’ name. Return value is either INVALID-ACQUISITION or defined by the build-in function push.

make-delivery The arguments are the card-id and the demand-id. The return value is defined by the drop-good function or INVALID-DELIVERY.

The server will return either TOO-MANY-COMMANDS if the number of commands exceeds the move limit or the result list from processing each of the commands. If a command is not one from the list above, the result list will contain the symbol INVALID-COMMAND but will attempt to process additional commands after the invalid command. The server will append onto the front of the result list, the symbol MOVE-TURN to indicate the result list came from the move portion of the player’s turn. If the player has not reached the move limit, the server will issue the command (choose-move) again.

