
Python Tools for
Machine Learning

14.3

Motivation
•Machine learning involves working with data

– analyzing, manipulating, transforming, …

•More often than not, it’s numeric or has a
natural numeric representation

•Natural language text is an exception, but this
too can have a numeric representation

•A common data model is as a N-dimensional
matrix or tensor

•These are supported in Python via libraries

Motivation
•Python is a great language, but slow

compared to Java, C, and many others
•Python packages are available to represent,

manipulate and visualize matrices
•We’ll briefly review numpy and scipy

– Needed to create or access datasets for ML
training, evaluation and results

•And touch on pandas (data analysis and
manipulation) and matplotlib (visualization)

https://www.numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://matplotlib.org/

What is Numpy?

•NumPy supports features needed for ML
– Typed N-dimensional arrays (matrices/tensors)
– Fast numerical computations (matrix math)
– High-level math functions

•Python does numerical computations slowly
and lacks an efficient matrix representation

•1000 x 1000 matrix multiply
–Python triple loop takes > 10 minutes!
–Numpy takes ~0.03 seconds

NumPy Arrays Can Represent …

Structured lists of numbers
• Vectors
• Matrices
• Images
• Tensors
• Convolutional Neural

Networks

𝑝!
𝑝"
𝑝#

𝑎$$ ⋯ 𝑎$%
⋮ ⋱ ⋮

𝑎&$ ⋯ 𝑎&%

NumPy Arrays Can Represent …

Structured lists of numbers
• Vectors
• Matrices
• Images
• Tensors
• Convolutional Neural

Networks

NumPy Arrays Can Represent …

Structured lists of numbers
• Vectors
• Matrices
• Images
• Tensors
• Convolutional Neural

Networks

NumPy Arrays, Basic Properties
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>> print(a.ndim, a.shape, a.dtype)
2 (2, 3) float32
>> print(a)
[[1. 2. 3.]
[4. 5. 6.]]

Arrays:
1. Can have any number of dimensions, including zero (a scalar)
2. Are typed: np.uint8, np.int64, np.float32, np.float64
3. Are dense: each element of array exists and has the same type

NumPy Array Indexing, Slicing

a[0,0] # top-left element
a[0,-1] # first row, last column
a[0,:] # first row, all columns

a[:,0] # first column, all rows
a[0:2,0:2] # 1st 2 rows, 1st 2 columns

Notes:
– Zero-indexing
– Multi-dimensional indices are comma-separated)
– Python notation for slicing

SciPy

• SciPy builds on the NumPy array object
• Adds additional mathematical functions and

sparse arrays
• Sparse array: one where most elements = 0
• An efficient representation only implicitly

encodes the non-zero values
• Access to a missing element returns 0

SciPy sparse array use case
•NumPy and SciPy arrays are numeric
•We can represent a document’s content by a

vector of features
•Each feature is a possible word (aka term)
•A feature’s value might be any of:

– TF term frequency: the number of times a term
occurs in the document;

– TF-IDF term frequency normalized by IDF (inverse
document frequency) to favor uncommon words

– and may be normalized by document length as well

SciPy sparse array use case

•Only model 50k most frequent words found in a
document collection, ignoring others

•Assign each unique word an index (e.g., dog:137)
– Build python dict w from vocabulary, so w[‘dog’]=137

•The sentence “the dog chased the cat”
– Would be a numPy vector of length 50,000
– Or a sciPy sparse vector of length 4

•An 800-word news article may only have 100
unique words; The Hobbit has about 8,000

https://en.wikipedia.org/wiki/The_Hobbit

More on
SciPy

See the SciPy
tutorial Web
pages

13

https://docs.scipy.org/doc/scipy/reference/tutorial/

