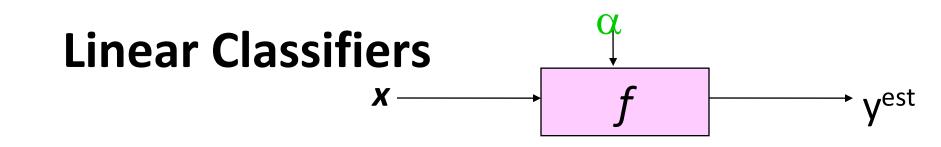
Support Vector Machines

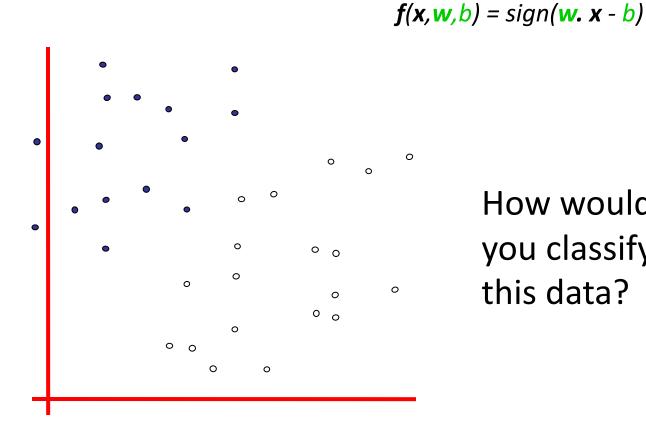
Some slides borrowed from Andrew Moore's slides on SVMs. His repository is here: http://www.cs.cmu.edu/~awm/tutorials.

Support Vector Machines

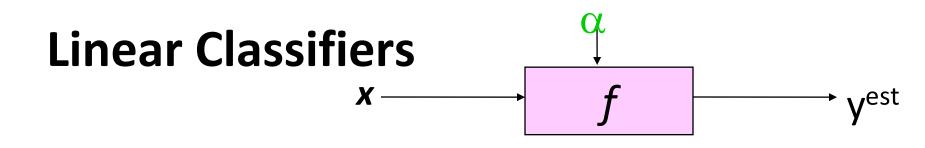
- Popular ML technique
 - -Became popular in the late 90s (Vapnik 1995; 1998)
 - -Invented in the late 70s (Vapnik, 1979)
- Controls complexity and overfitting, so works well on a wide range of practical problems
- Can handle high dimensional vector spaces, which makes feature selection less critical
- Fast and memory efficient implementations, e.g., <u>svm_light</u>
- Not always best solution, especially for problems with small vector spaces



- denotes +1
- denotes -1 0

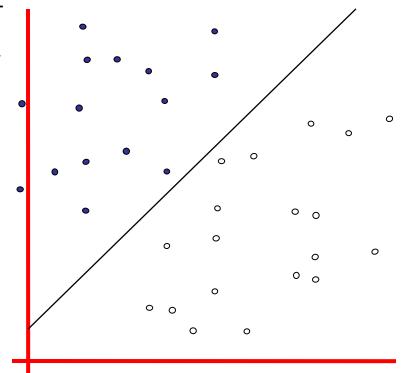


How would you classify this data?



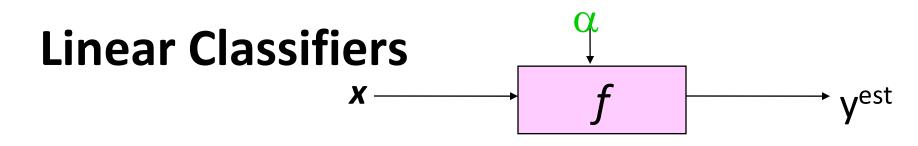
denotes +1

° denotes -1



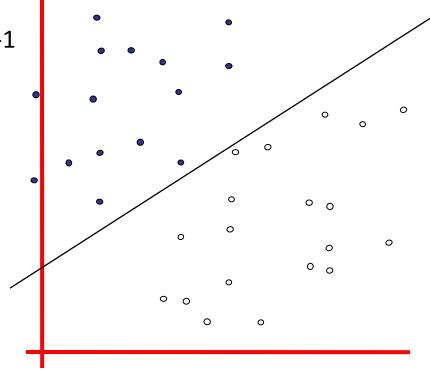
How would you classify this data?

f(x, w, b) = sign(w. x - b)

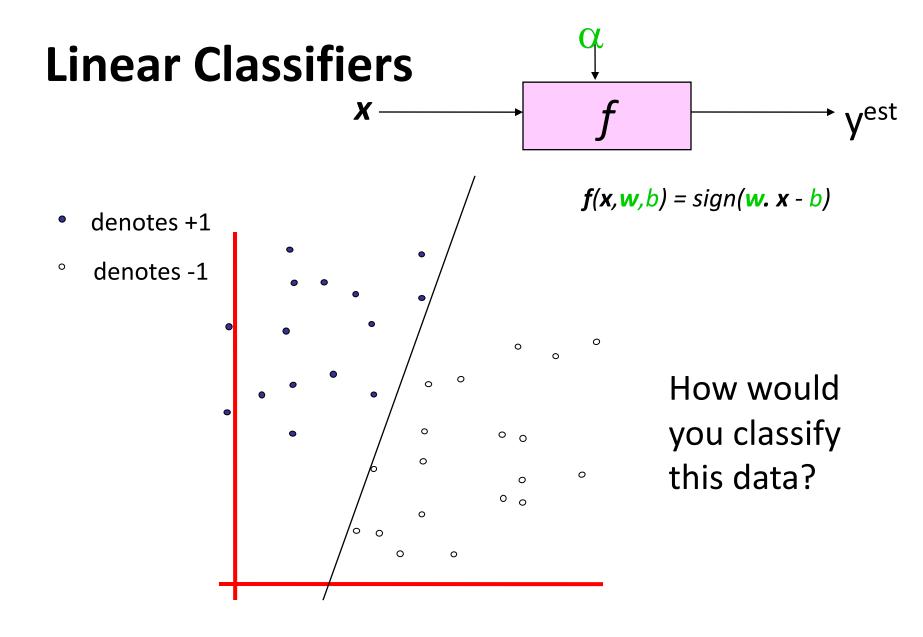


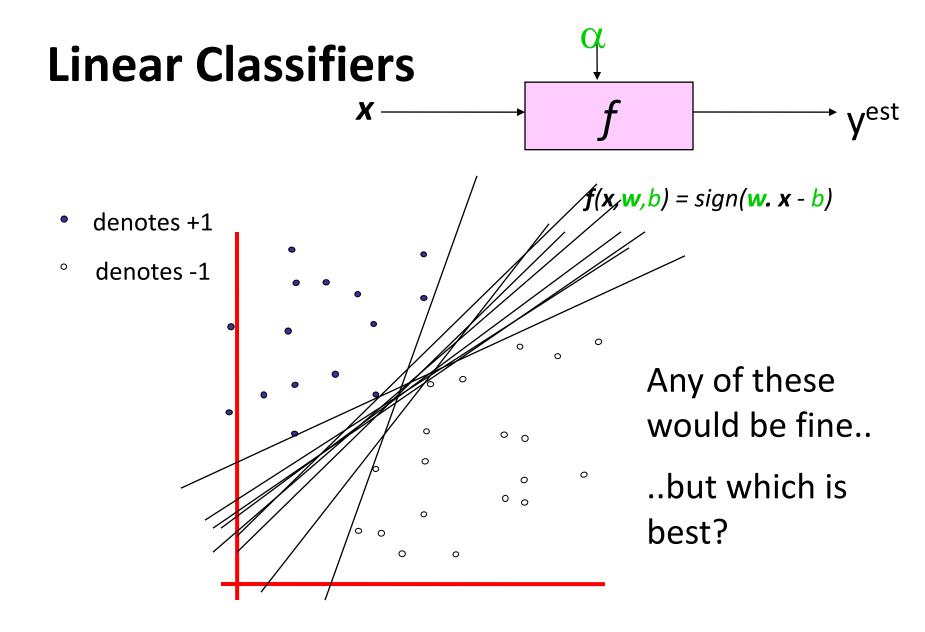
f(**x**, **w**, b) = sign(**w**. **x** - b)

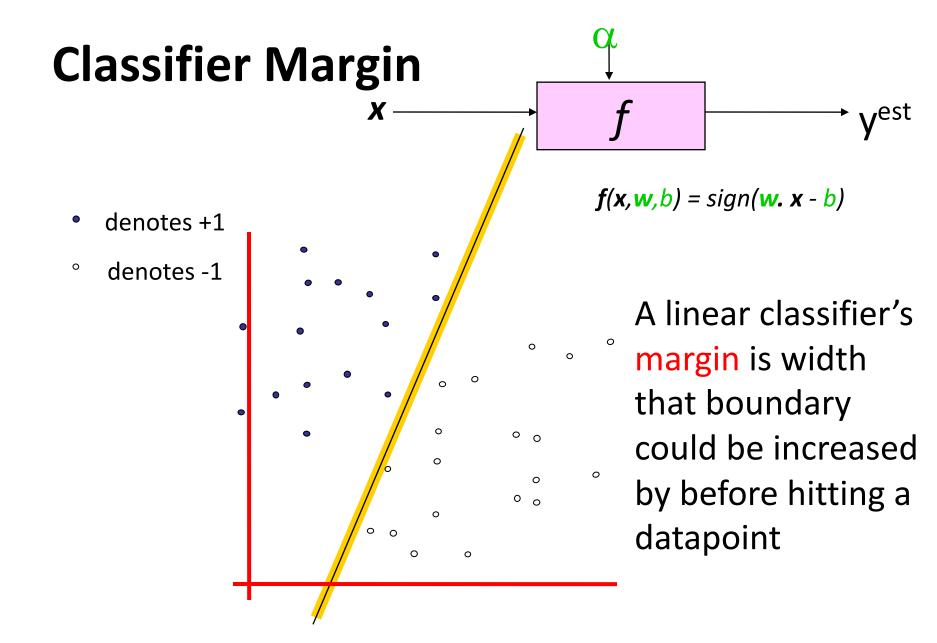
- denotes +1
- ° denotes -1

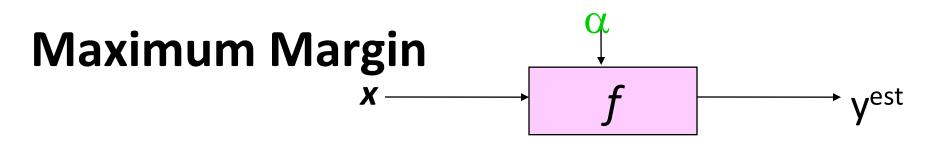


How would you classify this data?

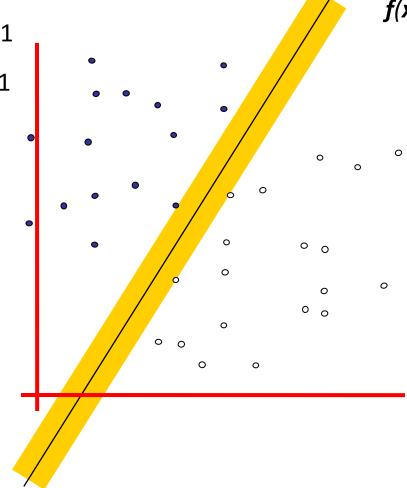








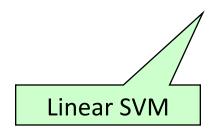
- denotes +1
- ° denotes -1

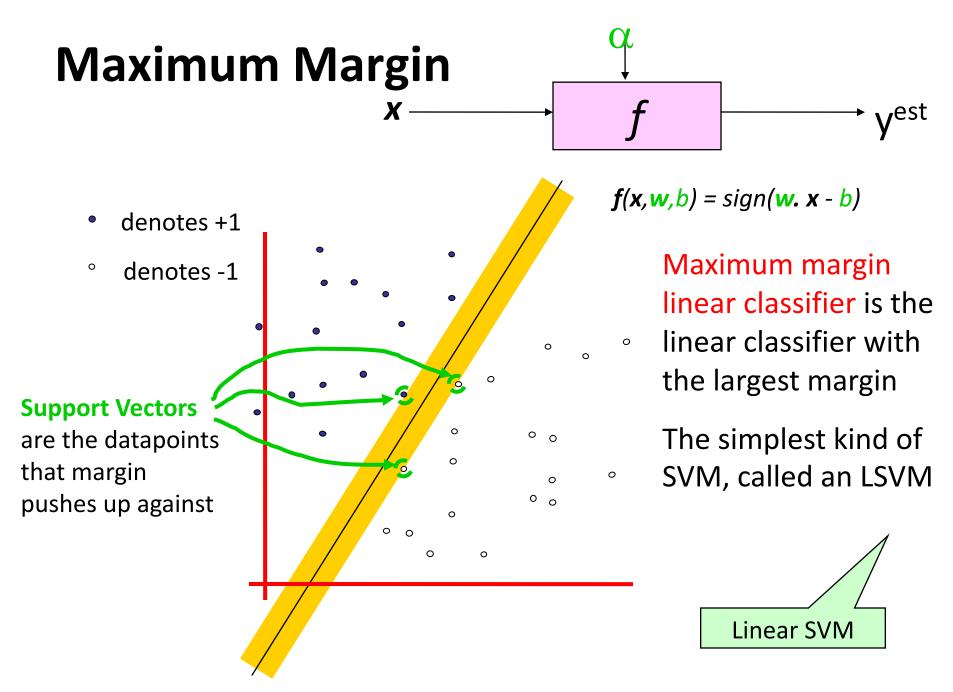


f(**x**, **w**, b) = sign(**w**. **x** - b)

Maximum margin linear classifier is the linear classifier with the largest margin

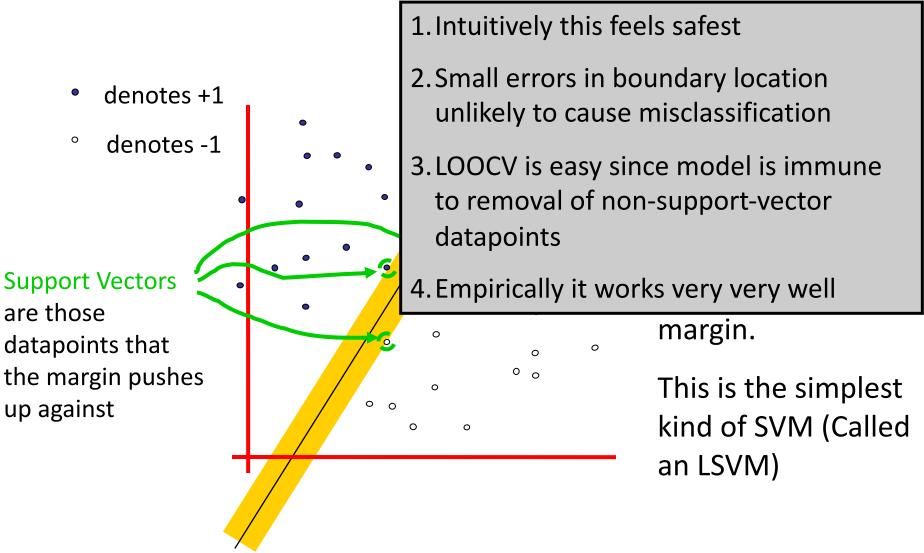
The simplest kind of SVM, called an LSVM





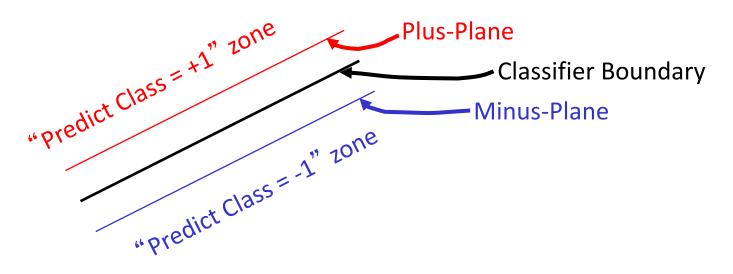
Copyright © 2001, 2003, Andrew W Moore

Why Maximum Margin?



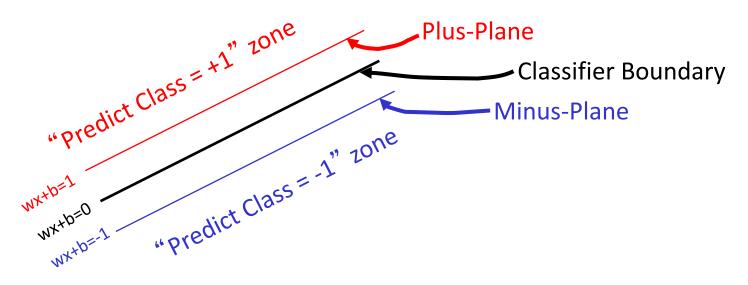
LOOCV = leave one out cross validation

Specifying a line and margin



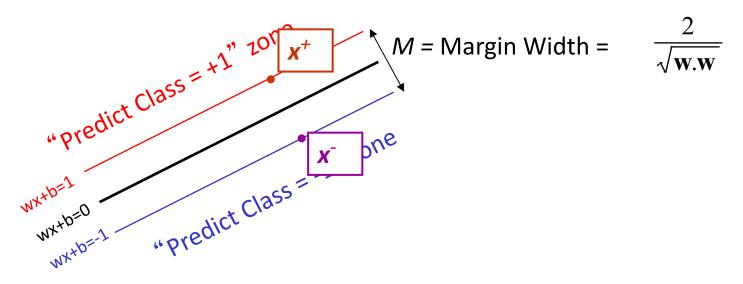
- How do we represent this mathematically?
- ... in *m* input dimensions?

Specifying a line and margin



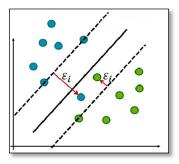
- Plus-plane = { **x** : **w** . **x** + b = +1 }
- Minus-plane = { **x** : **w** . **x** + b = -1 }
 - Classify as.. +1 -1 Universe if $-1 < w \cdot x + b <= -1$ $-1 < w \cdot x + b <= -1$

Learning the Maximum Margin Classifier



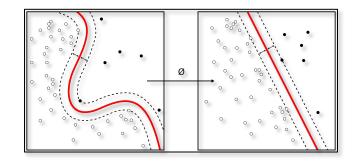
- Given a guess of **w** and b we can
 - Compute whether all data points in the correct half-planes
 - Compute the width of the margin
- Write a program to search the space of **w**s and *b*s to find widest margin matching all the datapoints.
- *How?* -- Gradient descent? Simulated Annealing? Matrix Inversion? EM? Newton's Method?

Soft margin classification



- What if data from two classes not linearly separable?
- Allow a fat decision margin to make a few mistakes
- Some points, outliers or noisy examples, are inside or on wrong side of the margin
- Each outlier incurs a cost based on distance to hyperplane

Kernel trick



- What if data from two classes not linearly separable?
- Project data onto a higher dimensional space where it becomes linearly separable
- Many SVMs can take an argument, a kernel, that does the transformation of the data
- Deciding what **kernel function** to use is done through experimentation

Kernel Trick example

Can't separate the blue & red points with a line

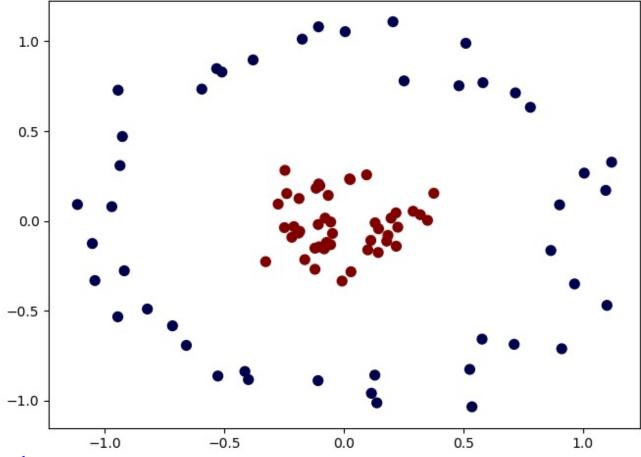
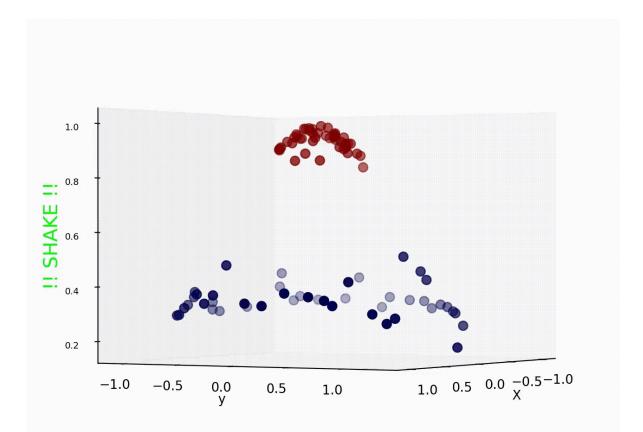


Figure from <u>S. Bhattacharyya</u>

Use a different kernel

- Applying a kernel can transform data to make it more nearly linearly separable
- E.g., use polar coordinates or map to three dimensions



SVM Performance

- SVMs can handle very large features spaces (e.g., 100K features)
- Relatively fast
- Anecdotally they work very well indeed
- Example: They are among the best-known classifier on a well-studied hand-writtencharacter recognition benchmark

100k features?

- SVM used for simple text classification, e.g., classify a text document as
 - expressing sentiment (positive, negative) or political learning (republican, democrat)
- Typically use each word in fixed vocabulary of 25-100k words as a feature/dimension
 - value is TF/IDF number -- frequency of the word in the document relative to all documents
- A product review might have ~200 unique words, social media posts only < 20 unique words
- SVMs typically use sparce matrices for efficiency

Binary vs. multi classification

- ullet SVMs only do **binary** classification igodot
 - -E.g.: can't classify an iris into one of three species
- Note: common for many ML classifiers
- Two approaches to multi classification: OVA and OVO
- Consider Zoo dataset, which classifies animals into one of 7 classes based on 17 attributes
 - Classes: mammal, bird, reptile, fish, amphibian, insect, invertebrate
 - Attributes: hair, feathers, eggs, milk, aquatic, toothed, fins, ...

OVA or one-vs-all classification

- OVA or **one-vs-all**: turn n-way classification into n binary classification tasks.
- For zoo problem, train and run 7 binary classifiers:
 - mammal vs. not-mammal
 - fish vs. not-fish
 - bird vs. not-bird, ...
- Pick the one that gives the highest score
 - For an SVM this could be measured the one with the widest margin

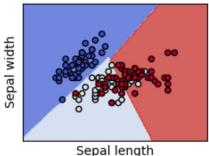
OVO or one vs one classification

- OVO or one vs one: turn n-way classes into N*(N-1)/2 one-vs-one classifiers
 - -mammal vs. bird, mammal vs. reptile ...
 - -bird vs. reptile, bird vs. fish, ...
 - -fish vs. amphibian, fish vs. insect, ...
- Use resulting scores to choose the classification that wins the most 1x1 pairings

SVMs in scikit-learn

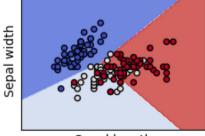
- Scikit-learn has three
 <u>SVM classifiers</u>: SVC, NuSVC, and LinearSVC
- Data can be either in dense numpy arrays or sparse scipy arrays
- All directly support multi-way classification, SVC and NuSCV using OVO and LinearSVC using OVA

SVC with linear kernel

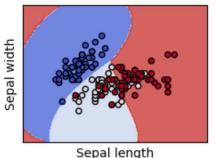


SVC with RBF kernel

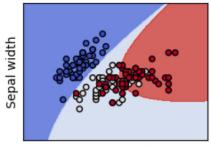
LinearSVC (linear kernel)



Sepal length



SVC with polynomial (degree 3) kernel



Sepal length

SVM Summary

- SVM is a good classification technique for problems with a large feature space
- Relatively fast to train and apply the model
- The kernel trick can help make some problems more-nearly linearly separable
- Their binary nature makes then a poorer fit for multi-way classification