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Decision Trees (DTs)

•A supervised learning method used for 
classification and regression

•Given a set of training tuples, learn model 
to predict one value from the others
– Learned value typically a class (e.g., goodRisk)

• Resulting model is simple to understand, 
interpret, visualize, and apply



Learning a Concept

Attributes
• Size: large, small
• Color: red, green, blue
• Shape: square, circle

The red groups are negative examples, blue positive

Task
Classify new object with 
a size, color & shape as 
positive or negative



Training data
Size Color Shape class

Large Green Square Negative
Large Green Circle Negative
Small Green Square Positive
Small Green Circle positive
Large Red Square Positive
Large Red Circle Positive
Small Red Square Positive
Small Red Circle Positive
Large Blue Square Negative
Small Blue Square Positive
Large Blue Circle Positive
Small Blue Circle Positive



A decision tree-induced partition
The red groups are negative examples, blue positive

Negative things are  
big, green shapes and 
big, blue squares



Learning decision trees
• Goal: Build decision tree to classify examples as 

positive or negative instances of concept using 
supervised learning from training data

• A decision tree is a tree where
– non-leaf nodes have an

attribute (feature)
– leaf nodes have a classification

(+ or -)
– each arc has a possible value of

its attribute 
• Generalization: allow for >2 classes
– e.g., classify stocks as {sell, hold, buy}
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Expressiveness of Decision Trees
• Can express any function of input attributes, e.g., for 

Boolean functions, truth table row → path to leaf:

• There’s a consistent decision tree for any training set 
with one path to leaf for each example, but it 
probably won't generalize to new examples

• Prefer more compact decision trees



Inductive learning and bias

• Suppose that we want to learn a function f(x) = y and 
we’re given sample (x,y) pairs, as in figure (a)

• Can make several hypotheses about f, e.g.: (b), (c) & (d)
• Preference reveals learning technique bias, e.g.:

– prefer piece-wise functions (b)
– prefer a smooth function (c)
– prefer a simple function and treat outliers as noise (d)



Preference bias: Occam’s Razor

•William of Ockham (1285-1347)
– “non sunt multiplicanda entia praeter necessitatem”
– entities are not to be multiplied beyond necessity 

•Simplest consistent explanation is the best
•Smaller decision trees correctly classifying 

training examples preferred over larger ones
•Finding the smallest decision tree is NP-hard, 

so we use algorithms that find reasonably 
small ones

https://en.wikipedia.org/wiki/Occam%27s_razor


R&N’s restaurant domain
•Develop decision tree that customers make when 

deciding whether to wait for a table or leave
•Two classes: wait, leave
•Ten attributes: Alternative available? Bar in 

restaurant? Is it Friday? Are we hungry? How full 
is restaurant? How expensive? Is it raining? Do we 
have reservation? What type of restaurant is it? 
Estimated waiting time?

•Set of 12 training examples
•~7000 possible cases 



Attribute-based representations

•Examples described by attribute values (Boolean, discrete, continuous), 
e.g., situations where will/won't wait for a table

•Classification of examples is positive (T) or negative (F)
•Serves as a training set



Decision tree from
introspection



Issues
•It’s like 20 questions
•We can generate many decision trees 

depending on what attributes we ask about 
and in what order

•How do we decide?
•What makes one decision tree better than 

another: number of nodes? number of 
leaves? maximum depth?

https://en.wikipedia.org/wiki/Twenty_Questions


ID3 / C4.5 / J48 Algorithm
•Greedy algorithm for decision tree construction 

developed by Ross Quinlan circa 1987 
•Top-down construction of tree by recursively 

selecting best attribute to use at current node
– Once attribute selected for current node, generate 

child nodes, one for each possible attribute value
– Partition examples using values of attribute, & assign 

these subsets of examples to the child nodes
– Repeat for each child node until examples associated 

with a node are all positive or negative

https://en.wikipedia.org/wiki/ID3_algorithm
https://en.wikipedia.org/wiki/C4.5_algorithm
https://en.wikipedia.org/wiki/Ross_Quinlan


Choosing best attribute
•Key problem: choose attribute to split given set of 

examples
•Possibilities for choosing attribute:

–Random: Select one at random 
–Least-values: one with smallest # of possible values 
–Most-values: one with largest # of possible values 
–Max-gain: one with largest expected information gain
–Gini impurity: one with smallest gini impurity value

•The last two measure the homogeneity of the 
target variable within the subsets

•The ID3 algorithm uses max-gain

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Decision_tree_learning


A Simple Example
For this data, is it better to start the tree by 
asking about the restaurant type or its 
current number of patrons



Choosing an attribute

Idea: good attribute splits examples into 
subsets that are (ideally) all positive or all 
negative

Which is better: Patrons? or Type?

stay
leave



Choosing an attribute
Idea: good attribute splits examples into subsets 
that are (ideally) all positive or all negative

• Patrons: for six examples we know the answer and for six we 
can predict with prob. 0.67

• Type: our prediction is no better than chance (0.50)

stay
leave



Choosing Patrons yields more information

The ID3 algorithm used this to decide what attribute to 
ask bout next when building a decision tree



ID3-induced 
decision tree



Compare the two Decision Trees

Human-generated decision tree ID3-generated decision tree

• Intuitively, the ID3 tree looks better, shallower and with 
fewer nodes
• ID3 uses information theory to decide which question is 

best to ask next



Information theory 101
•Sprang fully formed from Claude Shannon’s 

seminal work: Mathematical Theory of
Communication in 1948

•Intuitions
– Common words (a, the, dog) shorter than less 

common ones (parlimentarian, foreshadowing)
– Morse code: common letters have shorter encodings

•Information inherent in data/message (inform-
ation entropy) measured in the number of bits 
needed to store/send using an optimal encoding

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://en.wikipedia.org/wiki/Information_entropy


Information theory 101
•Information entropy ... tells how much 

information there is in an event or message. 
More uncertain it is, more information it contains

•Receiving a message is an event
•How much information is in these messages

– The sun rose today!   
– It’s sunny today in Honolulu!
– The coin toss is heads!
– It’s sunny today in Seattle!
– Life discovered on Mars!

None

A lot

https://simple.wikipedia.org/wiki/Information_entropy


Information theory 101
•For n equally probable possible messages or data 

values, each has probability 1/n
•Information of a message is –log2(p) = log2(n)

e.g., with 16 messages, then log(16) = 4 and we need 4 
bits to identify/send each message

• What if the messages are not equally likely?
•For probability distribution P (p1,p2…pn) for n mes-

sages, its information (H or information entropy) is:

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

http://en.wikipedia.org/wiki/Entropy_(information_theory)


Information entropy of a distribution
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
• Examples:

– If P is (0.5, 0.5) then I(P) = 0.5*1 + 0.5*1 = 1
– If P is (0.67, 0.33) then I(P) = -(2/3*log(2/3) + 

1/3*log(1/3)) = 0.92
– If P is (1, 0) then I(P) = 1*1 + 0*log(0) = 0

• More uniform probability distribution, greater its 
information: more information is conveyed by a 
message telling you which event actually occurred

• Entropy is the average number of bits/message 
needed to represent a stream of messages



Example: Huffman code
• In 1952, MIT student David Huffman devised (for a 

homework assignment!) a coding scheme that’s 
optimal when all data probabilities are powers of 1/2

• A Huffman code can be built as followings:
– Rank symbols in order of probability of occurrence
– Successively combine 2 symbols of lowest probability 

to form new symbol; eventually we get binary tree 
where each node is probability of nodes below

– Trace path to each leaf, noting direction at each node

https://en.wikipedia.org/wiki/David_A._Huffman
https://en.wikipedia.org/wiki/Huffman_coding


Huffman code example
M   P
A  .125
B  .125
C  .25
D  .5

• Four possible messages (A, B, C, D) 
each with a probability of being sent
• Obvious way to encode them is 

using 2 bits per message: A=00, 
B=01, C=10, D=11
• Sending 1,000 messages will require 

2,000 bits



Huffman code example
M   P
A  .125
B  .125
C  .25
D  .5
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M code length prob

A 000 3 0.125 0.375
B 001 3 0.125 0.375
C 01 2 0.250 0.500
D 1 1 0.500 0.500

average message length 1.750

• Using this code for many 
messages (A,B,C or D), the 
average bits/message should 
approach 1.75

• Sending 1000 messages will need 
~1750 bits



Information gain

•Gain(X,T) = Info(T) - Info(X,T) is difference of
– info needed to identify element of T and 
– info needed to identify element of T after value of 

attribute X known

•This is gain in information due to attribute X
•Used to rank attributes and build DT where 

each node uses attribute with greatest gain of 
those not yet considered in path from root

•goal: create small DTs to minimize questions



Information Gain
stay
leave

I = .5*log2(.5) + .5*log2(.5) = 0.5+0.5 = 1

I=0; P=1/6
I=0; P=1/3

I=(1/3*log2(1/3)+2/3*log2(2/3); P=1/2 = 0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 = 0

• Information gain for asking Patrons is 0.56, for asking Type is 0
• Note: If only one of the N categories has any instances, the information 

entropy is always 0

Information gain = 1 - 0.46 =  0.54

I = 6/6*1 = 1



How well does it work?

Case studies show that decision trees often at 
least as accurate as human experts
– Study for diagnosing breast cancer had humans 

correctly classifying examples 65% of the time; DT 
classified 72% correct

– British Petroleum designed DT for gas-oil 
separation for offshore oil platforms that replaced 
an earlier rule-based expert system

– Cessna designed an airplane flight controller using 
90,000 examples and 20 attributes per example



Extensions of ID3
• Using other selection metric gain ratios, e.g. gini
• Real-valued data
• Noisy data and overfitting
• Generation of rules
• Setting parameters
• Cross-validation for experimental validation of 

performance
• C4.5: extension of ID3 accounting for unavailable 

values, continuous attribute value ranges, pruning 
of decision trees, rule derivation, etc.



Real-valued data?

Many ML systems work only on nominal data
•Select thresholds defining intervals so each 

becomes a discrete value of attribute
•Use heuristics: e.g., always divide into quartiles
•Use domain knowledge: e.g., divide age into 

infant (0-2), toddler (3-5), school-aged (5-8)
• Or treat this as another learning problem

– Try different ways to discretize continuous variable; 
see which yield better results w.r.t. some metric

– E.g., try midpoint between every pair of values



Noisy data L?
ML systems must deal with noise in training data
•Two examples have same attribute/value pairs, 

but different classifications 
•Some attribute values wrong due to errors in 

the data acquisition or preprocessing phase 
•Classification is wrong (e.g., + instead of -) 

because of some error 
•Some attributes irrelevant to decision-making, 

e.g., color of a die is irrelevant to its outcome
Bias in the training data is a related problem



Bias: If it’s cloudy, it’s a tank
•You may hear the story of a machine learning 

system designed to classify images into those 
with and without camouflaged tanks

•It was trained on N images with tanks and M 
images with no tanks

•But the positive examples were all taken on a 
cloudy day; the negative on a sunny one

•System worked well, but had learned to detect 
the weather L

•The story is too good to be true; see Neural Net 
Tank Urban Legend

https://www.gwern.net/Tanks


Overfitting L
•Overfitting occurs when a statistical

model describes random error or noise instead 
of underlying relationship

•If hypothesis space has many dimensions (many 
attributes) we may find meaningless regularity
in data irrelevant to true distinguishing features
Students with an m in first name, born in July, & 
whose SSN digits sum to a prime number get better 
grades in AI

•If we have too little training data, even a 
reasonable hypothesis space can overfit

https://en.wikipedia.org/wiki/Overfitting


Avoiding Overfitting
•Remove obviously irrelevant features

– E.g., remove ‘year observed’, ‘month 
observed’, ‘day observed’, ‘observer 
name’ from feature vector

•Get more training data
•Pruning lower nodes in a decision tree

– E.g., if gain of best attribute at a node is 
below a threshold, stop and make this node 
a leaf rather than generating children nodes



Pruning decision trees
• Pruning a decision tree is done by replacing a whole 

subtree by a leaf node
• Replacement takes place if the expected error rate 

in the subtree is greater than in the single leaf, e.g.,
– Training: 1 training red success and 2 training blue failures
– Test: 3 red failures and one blue success
– Consider replacing this subtree by a single Failure node. 

• After replacement, only 2 errors instead of 4

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Test Pruned



Converting decision trees to rules
•Easy to get rules from decision tree: write rule 

for each path from the root to leaf
•Rule’s left-hand side built from the label of the 

nodes & labels of arcs
•Resulting rules set can be simplified:

– Let LHS be the rule’s left hand side (condition part)
– LHS’ obtained from LHS by eliminating some conditions 
– Replace LHS by LHS' in this rule if the subsets of the 

training set satisfying LHS and LHS' are equal
– A rule may be eliminated by using meta-conditions such 

as “if no other rule applies”



Summary: decision tree learning

• Widely used learning methods in practice for 
problems with relatively few features

• Strengths
– Fast and easy to implement
– Simple model: translate to a set of rules
– Useful: empirically valid in many commercial products
– Robust: handles noisy data
– Explainable: easy for people to understand

• Weaknesses
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors 
– Non-incremental, adding one new feature requires 

rebuilding entire tree


