
Axelrod
exploring the iterated

prisoner’s dilemma

Axelrod-Python

• https://github.com/Axelrod-Python
– Explore strategies for the Prisoners dilemma game
– Over 100 strategies from literature and original ones
– Run round robin tournaments with options
– Population dynamics (i.e., evolution)

• Easy to install
– pip install axelrod

• Also includes notebooks
• Documentation

https://github.com/Axelrod-Python
https://github.com/Axelrod-Python
https://axelrod.readthedocs.io/en/stable/

https://github.com/Axelrod-Python

https://github.com/Axelrod-Python

Axelrod Players
• A player like TitForTat is a subclass of a Player class
• Every player subclass has a set of fixed properties

(e.g., how many interactions it remembers)
• A subclass has instances with unique IDs
• Instances interact with “opponents”, who are

instances of a player subtype
• Each instance maintains a history of its interactions

with each opponent it encounters
• Its strategy for an encounter may depend on this

TitForTatclass TitForTat(Player):
name = "Tit For Tat"
classifier = {

"memory_depth": 1,
"stochastic": False,
"inspects_source": False,
"manipulates_source": False,
…}

def strategy(self, opponent: Player) -> Action:
First move
if not self.history:

return C
React to the opponent's last move
if opponent.history[-1] == D:

return D
return C

Note use of type
hints, added in 3.5

Remembers only
last interaction
with a given player

TitFor2Tatsclass TitFor2Tats(Player):
"""player starts by cooperating and then defects only after 2defects by opponent”””
name = "Tit For 2 Tats"
classifier = {

"memory_depth": 2,
"stochastic": False,
"inspects_source": False,
"manipulates_source": False,
…}

@staticmethod
def strategy(opponent: Player) -> Action:

return D if opponent.history[-2:] == [D, D] else C

Remembers last2
interactions with a
given player

Cooperates unless
this opponent
defected the last
two times

Bulleyclass TitFor2Tats(Player):
""" player that behaves opposite to Tit For Tat, including first move”””
name = "Tit For 2 Tats"
classifier = {

"memory_depth": 2,
"stochastic": False,
"inspects_source": False,
"manipulates_source": False,
…}

@staticmethod
def strategy(opponent: Player) -> Action:

return C if opponent.history[-1:] == [D] else D

Predefined Player Strategies

•There are 24 variations on the basic Tit For
Tat strategy

•And more than 100 other player strategies
•See an index here with brief descriptions

and links to the Python source code

https://axelrod.readthedocs.io/en/stable/reference/all_strategies.html

