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Abstract


E�ective task-level control is critical for robots
that are to engage in purposeful activity in real-
world environments. This paper describes PRS-
Lite, a task-level controller grounded in a proce-
dural knowledge approach to action description.
The controller embodies much of the philosophy
that underlies the Procedural Reasoning System
(PRS) but in a minimalist fashion. Several fea-
tures of PRS-Lite distinguish it from its predeces-
sor, including a richer goal semantics and a gener-
alized control regime. Both of these features are
critical for supporting the management of con-
tinuous processes employed in current-generation
robots. PRS-Lite has been used extensively as a
task-level controller for a robot whose underlying
behaviors are implemented as fuzzy rules. Tasks
to which it has been applied include vision-based
tracking, autonomous exploration, and complex
delivery scenarios.


Introduction


In recent years, there has been a convergence of de-
sign methodologies for certain aspects of robot control.
Most architectures employ a suite of continuous pro-
cesses (often called behaviors) that provide low-level,
situated control for the physical actions e�ected by
the system. Above that, there is a recognized need for
task-level control: marshaling the lower-level processes
in the pursuit of speci�c objectives. In addition, many
argue the need for a higher-level deliberative layer to
provide look-ahead planning capabilities.
Our interests lie with task-level control. An ade-


quate task-level controller for a robot must satisfy cer-
tain minimum requirements. The controller must sup-
port both discrete actions (such as performing an ut-
terance) and continuous processes (such as following
a wall). The controller must support concurrent ac-
tions, since a robot must generally perform many ac-
tivities in parallel. Goal-driven and event-driven oper-
ation should be seamlessly integrated to enable a mix-
ture of taskability and reactiveness. Timely response
to changes in the world is critical for both task exe-
cution and survival. Finally, the structure of the con-


trol framework should enable understanding by exter-
nal observers of the intent that underlies the robot's
actions.


This paper describes PRS-Lite, a task-level con-
troller for a mobile robot that embodies a procedu-
ral knowledge approach to action description (George�
& Lansky 1986). PRS-Lite satis�es the requirements
for task-level control while providing a natural, expres-
sive framework in which to specify purposeful activity.
PRS-Lite has been used extensively for a range of com-
plex tasks on a mobile robot platform, thus validating
its fundamental design.


PRS-Lite is derived loosely from the family of Pro-
cedural Reasoning Systems (George� & Ingrand 1989;
Myers 1993), which we refer to collectively as PRS-
Classic. PRS-Classic satis�es many (but not all) of
the requisite properties for a task controller, thus jus-
tifying its choice as a design basis from which to begin.
Indeed, PRS-Classic was used previously as a task con-
troller for a mobile robot (George� & Lansky 1987).
However, that e�ort assumed highly restrictive condi-
tions, including a benign operating environment and
complete, accurate world maps.


PRS-Lite and PRS-Classic are similar in spirit. Both
manage the invocation and execution of procedural
representations of the knowledge required to achieve
individual goals. Both provide the smooth integration
of goal-driven and event-driven activity, while remain-
ing responsive to unexpected changes in the world.
However, the embodiment of the procedural knowledge
philosophy in the two systems is markedly di�erent.
PRS-Classic is a large, general-purpose, mature system
that was designed for use in a broad range of control
applications. It provides many sophisticated services,
including a multiagent architecture, multitasking,met-
alevel reasoning capabilities, and rich interactive con-
trol via graphical interfaces. PRS-Lite is a minimalist
redesign that omits certain of these features for the
bene�t of compactness and e�ciency. For example,
while metalevel reasoning can be valuable in certain
situations, its support incurs a heavy cost of deliber-
ation. A key objective in designing PRS-Lite was to
retain the mixture of goal-directed and reactive activ-







ity, but in a more streamlined setting. Computational
e�ciency was an overriding concern, being critical for
timely response to unpredictable runtime events. In
particular, the robot for which PRS-Lite was designed
requires a sense-act cycle of 100ms, which must encom-
pass all e�ector, perception, interpretation, and control
actions.
PRS-Lite is not simply a subset of PRS-Classic.1


Indeed, certain of the requirements for robot control
are absent from PRS-Classic. One problem is PRS-
Classic's assumption of atomicity for its primitive ac-
tions, making it unsuitable for the control of continu-
ous processes. A related problem is its goal semantics:
goals either succeed or fail, with their outcome a�ect-
ing the overall ow of control in the system. As has
been noted (Firby 1994; Gat 1992), this semantics is in-
appropriate for managing continuous processes. PRS-
Lite employs an alternative goal semantics that sup-
ports both atomic actions and continuous processes,
as well as a control regime divorced from any notion of
goal success or failure.
Numerous proposals for the design of task-level con-


trollers have been tendered in recent years, includ-
ing (Firby 1994; Gat 1992; Nilsson 1994; Payton 1990;
Simmons 1994). PRS-Lite has several characteristics
that distinguish it from these e�orts. One is that PRS-
Lite was designed to control behaviors implemented us-
ing the paradigmof fuzzy logic. Such behaviors present
unique problems and opportunities for a task-level con-
troller. A second characteristic is the underlying design
philosophy: while most robot controllers have been de-
veloped bottom-up in a problem-driven manner, PRS-
Lite was derived from a mature, sophisticated reactive
control system. In particular, PRS-Classic has been
used extensively in a range of demanding applications
requiring the integration of reactive and goal-oriented
activity, thus boding well for the general applicability
of the derivative PRS-Lite system.2 In contrast, most
recent task controllers were developed and tested ex-
clusively in the context of robot taskability.


Task-level Control in the Saphira


Architecture
PRS-Lite is the task-level controller for Flakey, SRI's
custom-built mobile robot. Flakey's current percep-
tion capabilities include a ring of 12 sonar sensors
along its base and a stereo camera pair mounted on a
pan/tilt head. Flakey is also equipped with a speaker-
independent speech recognition system (Nuance) and a


1The representations used by the two systems are not
compatible at present (i.e., neither can run with the other's
procedure de�nitions).


2Applications of PRS-Classic include real-time tracking
(Garvey & Myers 1993), a monitoring and control system
for the Reaction Control System of the NASA Space Shuttle
(George� & Ingrand 1988), a controller for naval battle
management (Ingrand, Goldberg, & Lee 1989), and crisis
action planning (Wilkins et al. 1995).


speech synthesis program; together these two systems
enable humans to interact with Flakey in a relatively
natural manner.
We briey describe those aspects of Flakey's overall


software architecture, called Saphira (Konolige et al.
1996), that impact the design and behavior of PRS-
Lite. Saphira employs a layered control model, con-
sisting of an e�ector level focused on basic physical
actions, a behavior level, and a task level. On the rep-
resentational side, Flakey applies perception and inter-
pretation methods to construct and maintain an inter-
nal model of its environment, called the Local Percep-
tual Space (LPS). The LPS combines low-level occu-
pancy grid information (Moravec & Elfes 1985), mid-
level features (such as surfaces), and fully interpreted
high-level structures such as corridors and doorways.
The LPS can also store `imaginary' features (called ar-
tifacts) used for control purposes, such as points in
space to which the robot should navigate. The behav-
ior and task controllers make extensive use of the LPS
to ground their actions in the real world.
Behaviors provide the lowest level of managed con-


trol in the system. Examples include behaviors to fol-
low a wall, to avoid collisions, and to track a person
from visual input. Behaviors are implemented as sets
of fuzzy rules whose antecedents consist of fuzzy for-
mulas constructed from fuzzy predicates and logical
connectives, and whose consequents are fuzzy sets of
control values related to e�ector-level concepts such
as velocity or orientation (Sa�otti, Ruspini, & Kono-
lige 1993). This approach provides the means to con-
dition the strength of a response on the strength of
the underlying stimulus. Since di�erent rules may rec-
ommend di�erent levels of response, a `defuzzi�cation'
method is used to adjudicate the control values across
rules, yielding an integrated control value. This in-
tegration enables graceful blending of activities and
smooth transitions between di�erent sets of behaviors.
At any point in time, several behaviors are generally
enabled, with their level of activation determined by
the fuzzy controller.
Task-level control involves coordinating the various


modules of the system (behaviors, speech recognition,
speech generation, and visual processing) in the pur-
suit of speci�c high-level objectives, using the LPS as
a shared repository of information about the environ-
ment. The activities of the speech and visual process-
ing modules can be modeled as discrete actions. Thus,
the focus of task management is to integrate these ac-
tions with the continuous processes that implement be-
haviors. PRS-Lite �lls this role in the Saphira archi-
tecture.


PRS-Lite


The representational basis of PRS-Lite is the activ-
ity schema, a parameterized speci�cation of procedu-
ral knowledge for attaining a declared objective. This
procedural knowledge is represented as an ordered list







of goal-sets, whose successive satisfaction will yield the
overall objective of the schema. A goal-set is com-
posed of one or more goal statements (or goals), each
consisting of a goal operator applied to a list of ar-
guments. A goal-set can be optionally identi�ed by a
label unique to its schema. Intuitively, a goal-set cor-
responds to an ordered sequence of goals that are to be
achieved as an atomic unit. A compiler transforms the
schema speci�cations into parameterized �nite-state
machines (performing optimizations where appropri-
ate), whose arcs are labeled with individual goal-sets
to be achieved. Activity schemas are launched by in-
stantiating their parameters and intending them into
the system. Such instantiated schemas are referred to
as intentions. Multiple intentions can be active simul-
taneously, providing a multitasking capability.


Di�erent modalities of goals are supported, as sum-
marized in Figure 1. Broadly speaking, goal types can
be categorized as action or sequencing. Action goals
ground out in either executable functions (called prim-
itive actions), tests on the state of the environment (as
represented in the internal world model), or the acti-
vation/deactivation of intentions and behaviors. This
last ability enables the hierarchical decomposition of
goals. Sequencing goals provide conditional goal exe-
cution and sophisticated goal ordering beyond the de-
fault of linear processing, as well as various forms of
parallelism.


Overall, PRS-Lite can be used to generate and man-
age a forest of directed graphs whose nodes each rep-
resent a goal-set from some activity schema. The root
node of each graph represents a top-level goal, with its
successors generated by hierarchical goal re�nement.
We refer to the set of active graphs at a given point in
time as the current intention structures for the system.
The leaf nodes of the intention structures are called the
current nodes, and their associated goal-sets the cur-
rent goal-sets. Note that an intention structure can
have multiple current nodes because of the inclusion
of parallel sequencing goals in the schema de�nition
language.


An executor manages intentions at runtime. It re-
peatedly operates a short processing cycle in which it
considers the current goal-sets in each intention struc-
ture, performs any actions required to achieve their
constituent goals, and updates the set of current nodes
(as appropriate). The decision to limit processing to
a single goal-set for each leaf node in an intention
structure ensures overall responsiveness to new events.
Given the granularity of processing, responsiveness is
dependent on the number of active intentions, the de-
gree of parallelism in those intentions, the size of goal-
sets, and the underlying primitive actions that are ex-
ecuted. The design has proven adequate for the tasks
considered to date, as discussed in greater detail later
in the paper.


Action Goals:
Test check a condition
Execute execute a primitive action
= assignment of local variables
Wait-for wait for a condition
Intend dispatch intentions (block/nonblock)
Unintend terminate intentions


Sequencing Goals:
If conditional goals
And parallel goals (with join)
Split parallel goals (without join)
Goto branching to labeled goals


Figure 1: PRS-Lite Goal Modalities


Goal Modalities


Action goals supply the most basic operations in the
system. Test goals provide the ability to test beliefs
about the current state of the external world. Within
Saphira, beliefs are characterized by a combination of
the Local Perceptual Space and a set of environment
variables managed by PRS-Lite. Execute goals pro-
vide for the execution of primitive actions, which may
perform internal bookkeeping, the setting of environ-
ment variables, or the triggering of speci�c external
actions by the system. External actions for Flakey in-
clude the generation of an utterance by the speech syn-
thesis module, and the invocation of a route planner.
= goals enable the binding of local variables within an
intention.
Intend goals lead to the activation of both inten-


tions and behaviors. As such, they enable the hierar-
chical expansion of intentions through repeated goal re-
�nement. Unintend goals provide the complementary
ability to explicitly terminate active intentions before
they run their full course. This ability is critical when
operating in dynamic, unpredictable domains, where
rapid switching among activities is essential. Inten-
tions can be assigned priorities that determine the or-
der in which they are processed by the executor. In-
tentions can also be named when activated, allowing
them to be referenced by other intentions (in particu-
lar, Unintend goals).
A critical feature of Intend is that it supports the in-


vocation of intentions in either nonblocking or blocking
mode. In nonblocking mode, the intention is activated
and control proceeds to the next goal. In essence, the
nonblocking intention is spawned as an independent
process within the context of the parent intention; the
nonblocking intention will persist either until it com-
pletes or its parent intention terminates. In contrast,
blocking mode disables updating of the current goal
within the parent intention until the child completes.
Any intentions activated earlier by the parent inten-
tion will continue to be processed. Degrees of blocking
are also supported: an intention can be blocked until







a designated success criteria is satis�ed. This capabil-
ity is valuable for controlling behaviors implemented as
fuzzy rules, which provide a natural metric for de�n-
ing degrees of success (namely, the fuzzy predicates
that model the world state). As a simple illustration,
Flakey has a face-direction behavior that orients
the robot toward a designated heading. This behavior
is invoked with di�erent thresholds of blocking in dif-
ferent contexts, depending on how critical it is to be
precisely oriented to that heading.
Wait-for goals enable limited suspension of an in-


tention until a certain condition or event occurs. The
Wait-for goal modality is critical in the framework
in that it enables synchronization among concurrent
intentions through the use of shared variables. An il-
lustration is provided in the next section.
The sequencing goals enable more sophisticated


goal-ordering and selection mechanisms than does the
default of linear processing of goal-sets. Sequencing
goals can be nested to arbitrary depths, yielding a rich
framework for specifying control strategies. If goals
support conditional activation of a goal. Goto goals
support non-linear ow of control within an activity
schema, by allowing a current goal-set to be mapped
to any other labeled goal-set in the schema. Itera-
tion can be speci�ed through appropriate combina-
tions of If and Goto goals. Two forms of parallelism
are provided via the Split and And goal modalities.
Split parallelism spawns sets of independent concur-
rent goals, with control in the parent intention proceed-
ing to the successor goal-set. Each thread of activity
for the spawned goals continues until it completes, or
the parent intention terminates (similar in spirit to the
nonblocking mode of intending). In contrast, And par-
allelism treats the parallel goals as a unit; processing of
the parent intention suspends until each of the threads
occasioned by the And subgoals terminates.


Methodology and Use


Goal-directed behavior is produced by intending
schemas for satisfying individual tasks. Reactive,
event-directed behavior is produced by launching in-
tentions that employWait-for goals to suspend until
some condition or event transpires.
A common idiom for the design of activity schemas is


to de�ne an umbrella intention for a speci�c objective,
which in turn invokes both a lower-level intention for
achieving the objective, and one or more `monitor' in-
tentions (thus combining goal- and event-driven activ-
ities). Monitors use Wait-for goals to detect changes
in the world that could inuence the actions required
to achieve the overall objective of the top-level schema.
Certain monitors identify failure conditions that would
invalidate the approach being taken for the current
task. Others provide reactivity to unexpected events
that require immediate attention. Monitors can also
check for serendipitous e�ects that eliminate the need
for certain goals in active intentions, and modify the


intention structures accordingly.
To illustrate the use of the various goal modalities


and idioms, Figure 2 presents simpli�ed versions of ac-
tivity schemas used by Flakey to perform basic naviga-
tion tasks. The schema :plan-and-execute encodes
a procedure for generating and robustly executing a
plan to navigate to a designated destination. The des-
tination is speci�ed as a parameter to the schema, and
is represented as an artifact in the LPS, thus linking
abstract notions of place with the robot's beliefs about
its environment.
The initial goal-set in the schema (with the la-


bel :plan) employs an And goal applied to three
subgoals to perform certain initializations. The �rst
Execute subgoal invokes a function say that per-
forms a speech generation command. The second
Execute goal initializes the environment variable
*failed-execution*, which is used to encode infor-
mation about the status of plan execution. This vari-
able is an example of state information within PRS-
Lite that provides coordination among intentions (as
described further below). The �nal subgoal invokes a
function find-path that produces a topological plan
for navigating from the current locale to the destina-
tion. Navigation within Saphira is at the level of re-
gions (doors, junctions, hallways); the route planner
produces a sequence of such regions that should be
traversed to reach the target destination.
After performing the necessary initializations, the


schema intends a nonblocking monitor intention
:monitor-planex, followed by a blocking intention
:follow-path, in the spirit of the umbrella idiom
described above. This latter intention (not shown
here) cycles through the computed path, launch-
ing various lower-level intentions as required to nav-
igate between successive regions in the generated
path. The lower-level intentions may encounter dif-
�culties, which they signal by setting the environ-
ment variable *failed-execution*. The Wait-for
goal in the :monitor-planex intention would detect
such an event, and then process the goal (Unintend
'follow-it). Satisfying this goal would deactivate
the :follow-path intention, with the monitor inten-
tion then terminating. If no lower-level intention sig-
nals a failure, the blocking intention :follow-path
will eventually complete, enabling processing of the
remainder of the :plan-and-execute intention. The
:monitor-planex intention is terminated automati-
cally when its parent intention :plan-and-execute
terminates.
Figure 3 displays a snapshot of the intention struc-


tures at a point during a run in which Flakey uses
the above schemas to execute a delivery task.3 Each


3To improve the understandability of the robot's ac-
tions, PRS-Lite maintains an intention display that sum-
marizes the intention structures at the end of each ex-
ecution cycle. The intention display provides a concise
overview of the motivation for the actions being undertaken







(defintention :plan-and-execute
:params (dest)
:goals
`((:plan


(AND
(EXECUTE
(say "Planning path to ~a" dest))


(EXECUTE (setq *failed-execution* nil))
(= plan (find-path *cur-region* dest)))
)
(IF (null plan) (GOTO :finale))
(INTEND :monitor-planex () :blocking nil)
(INTEND :follow-path ((path . plan))
:blocking t :name follow-it)
(IF *failed-execution* (GOTO :plan))
(:finale
(IF (null plan)


(EXECUTE (say "No passable routes")))
) ))


(defintention :monitor-planex
:params ()
:goals
`((:monitor (WAIT-FOR *failed-execution*))
(:cleanup (UNINTEND 'follow-it)) ))


Figure 2: Activity Schemas for Directed Navigation


line in the display consists of: an initial marker, in-
dicating whether the intention is blocking (�) or non-
blocking (�), the name of the activity schema (e.g.,
Deliver-Object), a unique identi�er for the partic-
ular instantiation of the schema (e.g., a label such as
Follow-It if one was speci�ed in the Intend goal, else
an assigned name such as I3674), and either the next
state of execution (for an intention) or B (for a behav-
ior). At the instant captured by this display, PRS-
Lite has two intentions active at the highest-level (cor-
responding to two distinct user-speci�ed objectives):
Deliver-Object and Avoid. The Avoid intention
has only one active thread at this point, namely the
behavior for avoiding collisions (Avoid-Collision).
Note though that in the past or future, this inten-
tion may trigger many other activities. Of more inter-
est is the state of execution for the Deliver-Object
intention. At its topmost level, this parent inten-
tion has the single child intention Plan-and-Execute,
which in turn is executing the :follow-path schema
while simultaneously monitoring for execution failures
(via Monitor-Planex). As part of the path-following
schema, the robot is currently moving from a corridor
to a junction, which in turn has activated an inten-
tion to move toward a speci�c target. At the low-
est level, three behaviors are activate simultaneously,


by the system at any point in time, thus conveying to an
observer why the robot is behaving in a certain manner.


� Avoid (Avoid1) END
� Avoid-Collision (Collide) B


� Deliver-Object (I3674) S171
� Plan-And-Execute (I3675) S146
� Monitor-Planex (I3676) CLEANUP
� Follow-Path (Follow-It) S138
� Corridor-To-Junction (I3677) END
� Follow-To-Target (I3678) END
� Follow (Follow-To-Target) B
� Orient (Orient-To-Target) B
� Keep-O�-With-Target (Keep-O�) B


Figure 3: Snapshot of the Intention Structures during
Execution of a Delivery Task


namely Follow, Orient, and Keep-Off-With-Target.


Evaluation


PRS-Lite provides a powerful and natural framework
in which to specify and manage the purposeful activi-
ties of a robot. The system itself is compact (<500 lines
of LISP code, including executor, compiler, and display
manager), especially in comparison to PRS-Classic. It
has proven to be su�ciently fast over a broad range
of tasks, with the intention execution loop easily �t-
ting into Flakey's overall cycle time of 100 ms. Pre-
cise �gures for the cycle time of the PRS-Lite executor
are not available, but the combination of behavior and
task control lies somewhere in the range of 5 to 30 ms
(on a Sparc-2 processor). This is very fast, considering
that on average there are 10 to 15 intentions in oper-
ation, monitoring various conditions and coordinating
behaviors.
PRS-Lite was developed originally to support spec-


i�cation and runtime management of activities for the
tasks of the 1993 NCAI robot competition (Konolige
1994). Since that time, it has been used extensively
as the task-level controller onboard Flakey. We have
written more than 50 nontrivial activity schemas, span-
ning tasks such as directed navigation, real-time visual
tracking of people, autonomous exploration and map
construction, and delivery assignments. One of the
most complex involved a scenario in which the robot
was charged with retrieving an object from one person
and then delivering it to a second person, given only
default information regarding the whereabouts of the
�rst person. In particular, the robot had to act appro-
priately in situations where the individual was not at
the default location by soliciting her whereabouts from
a human, and then reasoning with that information to
determine how to proceed.
In contrast to many recent systems for reactive task


control, PRS-Lite does not support explicit runtime de-
liberation about goals and methods for achieving them.
This approach was adopted both out of concern for the







cost of deliberation and because such deliberation is
not essential for task-level control. Responsibility rests
with the activity schema designer to create adequate
and comprehensive representations of actions that di-
rectly dispatch procedures as required. Thus, the rep-
resentations in the system emphasize the essence of
procedural reasoning systems: the declarative repre-
sentation of procedural knowledge for achieving goals.
The expressiveness of PRS-Lite has proven mostly


adequate for the tasks handled to date. However, one
shortcoming is the inability to suspend execution of
an intention at an arbitrary point, for continuation
at some future time. A suspension capability would
enable certain activities to be postponed when more
urgent matters arise. For example, consider the oc-
currence of an unexpected event during the execution
of a navigation plan, for which immediate attention
is required. Ideally, we would like to suspend the
path-following intention (and its derivative intentions
and behaviors) temporarily, resuming with the path-
following after the problem has been addressed. In
the current framework, path-planning must be aborted
then restarted after the problem is resolved. (The only
alternative is to anticipate all possible problems di-
rectly in the activity schemas for plan execution { an
unlikely prospect.)


Control of Fuzzy Behaviors


Behaviors composed from fuzzy rules introduce unique
challenges for task-level control. One major advantage
of the fuzzy rules approach is the smoothness of activ-
ity that results from rule blending. However, sequenc-
ing languages (including activity schemas) model task-
level events as discrete actions connected by explicit
transitions, even when the tasks themselves ground out
in continuous processes. This separation of task and
behavior levels leads to discontinuities in the resultant
activities of the system. As an illustration, consider
the task of navigating to an o�ce in a given corri-
dor, and then entering it. Flakey has activity schemas
de�ned for the navigation and doorway-crossing, each
of which employs an appropriate set of behaviors. A
straightforward approach to the overall task would be
to execute a navigation intention to reach the o�ce,
and then a doorway-crossing intention to enter the of-
�ce. But the termination of the corridor navigation in-
tention prior to the activation of the doorway-crossing
intention leads to jerky, unnatural motion by the robot.
For smoother operation, the doorway-crossing behav-
iors must be activated before the robot reaches the
o�ce (i.e., while the corridor behaviors are still ac-
tive). The corridor navigation behaviors should ter-
minate once the robot is su�ciently far down the cor-
ridor to enable successful completion of the doorway-
crossing intention. Such intention-level blending can
be speci�ed in the PRS-Lite goal language, using a
combination of monitors and thresholded blocking of
intentions.


PRS-Lite vs PRS-Classic


Several features of PRS-Classic were consciously omit-
ted from PRS-Litebecause of concerns regarding their
computational overhead. However, certain of these
constructs could enhance and improve PRS-Lite.
Given the availability of unused cycle time in Saphira,
it would be interesting to extend the system in these
directions, and to perform experiments to assess their
associated costs.
One extension would be to add a database to provide


explicit, declarative representations of beliefs about the
world. In PRS-Lite, this state information is stored in
a combination of the Local Perceptual Space and a
set of environment variables. This approach is ade-
quate (although inelegant) for the current system, but
a database would support more general reasoning ca-
pabilities.
A second extension would be to provide limited run-


time deliberation to activate schemas. This would
enable selection from multiple candidate schemas for
achieving a goal, rather than the current approach
of directly dispatching intentions. Such deliberation
would require explicit declarations of the applicability
conditions and e�ects of individual activity schemas.
By itself, this extension would not directly increase the
overall capabilities of the system (although it would
improve modularity), since conditional branching can
be used to embed the decision-making process in ac-
tivity schemas explicitly. However, declarative spec-
i�cations of e�ects and applicability conditions for
schemas are necessary to enable automated composi-
tion of schemas by planners. We have performed some
initial e�orts in this regard, as described in the conclu-
sions.
One of the unique and heralded features of PRS-


Classic is its capacity for general-purpose metalevel
reasoning, a capability not included in PRS-Lite. Met-
alevel reasoning plays a critical role in PRS-Classic ap-
plications. Its two most important uses are to enable
selection among multiple applicable procedures for a
goal, and to override the default control strategy for
dispatching procedures. Neither of these capabilities is
necessary in PRS-Lite. The �rst is irrelevant, because
intentions are dispatched directly rather than chosen
by deliberation. The second is unnecessary because
the sequencing goals in PRS-Lite enable speci�cations
of extremely powerful control strategies, much more so
than in the representations that underlie PRS-Classic
(Wilkins & Myers 1995).
While PRS-Lite was conceived originally as a deriva-


tive of PRS-Classic, the experiences in designing and
using PRS-Lite have provided insights into improving
the original system. The most signi�cant of these are
techniques for controlling concurrent and interacting
continuous processes, a more powerful control regime
that supports both blocking and nonblocking paral-
lelism, and the generalized goal semantics that replaces
concepts of success or failure with levels of goal satis-







faction.


Related Work


Managing Fuzzy Behaviors


The most closely related work on controlling fuzzy be-
haviors is the control structures paradigm (Sa�otti,
Ruspini, & Konolige 1995). Control structures specify
declarative statements of the contexts of applicability
and goal conditions for behaviors implemented as fuzzy
rules. Goal regression through these structures is per-
formed to collect the behaviors required at any stage to
achieve a designated task. Execution of the resultant
task involves enabling this set of behaviors, with the
hope that environmental conditions will lead to appro-
priate activation or suppression of behaviors.
The control structures approach provides smooth


blending of behaviors across a task. However, the use
of a �xed, global set of behaviors throughout the du-
ration of a task has several drawbacks. Behaviors can
become activated for reasons other than those that mo-
tivated their inclusion in the regression set. Such unin-
tended activations may be serendipitous at times but
can also produce harmful interactions. For instance,
consider tasking a robot to navigate to the end of a
corridor to retrieve some object, and then to deliver
it to an o�ce midway along that corridor. The sec-
ond phase of this task requires a behavior for crossing
a doorway, which would get activated whenever the
robot is su�ciently close to it. But the enabling of this
behavior throughout the task would cause the robot to
enter the doorway prior to obtaining the delivery ob-
ject located at the end of the hallway, since there is no
goal context to restrict the behavior's activation.
The lack of an explicit goal state at runtime also


limits the understandability of the robot's activities
by an observer. To make this point more concrete, it
is easier to interpret the actions of a robot given the
intention structures of Figure 3 than a listing of the
current behaviors and their activation levels. Such un-
derstandability of autonomous systems (both hardware
and software) will be critical for their deployment in
real-world settings, especially to enable human interac-
tions with them (Myers & Konolige 1992). Finally, the
control structures approach focuses on behavior man-
agement exclusively, providing no mechanisms for syn-
chronizing with nonbehavior activities (such as control
of speech generation and understanding).


Reactive Control Frameworks


Several task-level controllers for managing the activi-
ties of mobile robots have been designed and built in
recent years. Of those, the most similar to PRS-Lite is
the extended version of the RAP system that man-
ages sets of interacting continuous processes (Firby
1994). The di�erences between this version of RAP
and the original (Firby 1987) mirror the di�erences
between PRS-Lite and PRS-Classic. Key capabilities


provided in the the second-generation systems that
were not present in the �rst include the management
of concurrent continuous processes, and the elimina-
tion of reliance on goal success or failure. PRS-Lite
and the extended RAP system provide comparable ex-
pressive power but the underlying knowledge represen-
tations have di�erent avors. PRS-Lite builds many
key control constructs into its goal language, whereas
they are implicit in the RAP formalism. For instance,
Unintend goals enable explicit termination of active
processes; in RAP, termination is handled implicitly
through appropriate combinations of other constructs.
RAP similarly can be made to block tasks until a des-
ignated success criterion is satis�ed, but there is no
explicit operator for doing so in its underlying lan-
guage (in contrast to the various modes of the Intend
operator in PRS-Lite). PRS-Lite also provides richer
sequencing operations than does RAP. We note that
RAP supports runtime deliberation for enabling tasks,
a feature that was intentionally excluded from PRS-
Lite.


Conclusions


Work on reactive control has had a tendency to `rein-
vent the wheel': research teams design new architec-
tures from scratch, often inuenced by the idiosyn-
crasies of the particular tasks at hand. In contrast,
PRS-Lite is a task-level controller whose design capi-
talized on experience with a mature, sophisticated re-
active control system.
PRS-Lite is a successful controller for several rea-


sons. It provides a rich mechanism for composing and
sequencing processes to achieve speci�c tasks while be-
ing responsive to unexpected events. It provides a nat-
ural goal-decomposition semantics that a�ords direct
understandability of system activities, and uniformdis-
patching of task- and behavior-level activities that sup-
ports both discrete and continuous activities. One of
its most unique features is the task-level blending of
behaviors implemented as fuzzy rules, thus enabling
smooth integration of overlapping, lower-level continu-
ous processes. Finally, it has been exercised extensively
in the role of task-level controller for a mobile robot.
There has been little need for planning capabili-


ties in the tasks handled to date by our robot, other
than basic route planning required for navigation tasks.
Certainly, applications of a more demanding nature
will require generalized look-ahead planning. We have
used Sipe{2, a hierarchical generative planner (Wilkins
1988), in conjunction with PRS-Lite to compose more
complex action sequences for achieving tasks that re-
quire such deliberation. For this integration, a desig-
nated set of PRS-Lite activity schemas serves as the
primitive operators in Sipe{2 (in much the same way
that Sipe{2 and PRS-Classic interact in the Cypress
architecture (Wilkins et al. 1995)). These schemas are
annotated with declarative speci�cations of their ap-
plicability conditions and e�ects. Additional activity







schemas are de�ned for issuing a request to Sipe{2 to
solve a particular planning problem, waiting for Sipe{2
to generate a plan, mapping the operators in that plan
to activity schemas, and then invoking those schemas
in the appropriate order. Monitoring by PRS-Lite in-
tentions detects problems during plan execution, rein-
voking Sipe{2 as required to generate modi�ed plans.
Sipe{2 cannot directly track changes in the world-state
that arise during plan execution, so replanning requests
issued by intentions are annotated with summaries of
those aspects of the world-state that could impact plan
generation. The planning and replanning capabilities
have been used to date only in a restricted capacity
(given the limited set of purposeful actions that our
robot can perform), but illustrate the potential for gen-
erative planning based on activity schemas. We note
that for nontrivial tasks, the amount of reasoning re-
quired to formulate a satisfactory plan will far exceed
the short duration of the sense-act cycle required by a
robot. A more exible integration model is required in
which the planner operates as an asynchronous process
that communicates with the reactive controller when
necessary.
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