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Machine Learning: Machine Learning: 
Decision TreesDecision Trees

Chapter 18.1-18.3

Some material adopted from notes 
by Chuck Dyer
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What is learning?

• “Learning denotes changes in a system that ... 
enable a system to do the same task more 
efficiently the next time.” –Herbert Simon 

• “Learning is constructing or modifying 
representations of what is being experienced.” 
–Ryszard Michalski 

• “Learning is making useful changes in our minds.” 
–Marvin Minsky 
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Why study learning?
• Understand and improve efficiency of human learning

– Use to improve methods for teaching and tutoring people 
(e.g., better computer-aided instruction)

• Discover new things or structure previously unknown
– Examples: data mining, scientific discovery

• Fill in skeletal or incomplete specifications about a domain
– Large, complex AI systems can’t be completely derived 

by hand and require dynamic updating to incorporate 
new information. 

– Learning new characteristics expands the domain or 
expertise and lessens the “brittleness” of the system 

• Build agents that can adapt to users, other agents, and their 
environment 4

A general model of learning agents 
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Major paradigms of machine learning
• Rote learning – One-to-one mapping from inputs to stored 

representation. “Learning by memorization.” Association-based 
storage and retrieval. 

• Induction – Use specific examples to reach general conclusions 
• Clustering – Unsupervised identification of natural groups in data
• Analogy – Determine correspondence between two different 

representations 
• Discovery – Unsupervised, specific goal not given 
• Genetic algorithms – “Evolutionary” search techniques, based on 

an analogy to “survival of the fittest”
• Reinforcement – Feedback (positive or negative reward) given at 

the end of a sequence of steps
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The inductive learning problem
• Extrapolate from a given set of examples to make accurate 

predictions about future examples
• Supervised versus unsupervised learning

– Learn an unknown function f(X) = Y, where X is an input example 
and Y is the desired output. 

– Supervised learning implies we are given a training set of (X, Y) 
pairs by a “teacher”

– Unsupervised learning means we are only given the Xs and some 
(ultimate) feedback function on our performance. 

• Concept learning or classification
– Given a set of examples of some concept/class/category, determine 

if a given example is an instance of the concept or not
– If it is an instance, we call it a positive example
– If it is not, it is called a negative example
– Or we can make a probabilistic prediction (e.g., using a Bayes net)
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Supervised concept learning

• Given a training set of positive and negative 
examples of a concept

• Construct a description that will accurately classify 
whether future examples are positive or negative

• That is, learn some good estimate of function f 
given a training set {(x1, y1), (x2, y2), ..., (xn, yn)} 
where each yi is either + (positive) or - (negative), 
or a probability distribution over +/-
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Inductive learning framework

• Raw input data from sensors are typically preprocessed to 
obtain a feature vector, X, that adequately describes all of the 
relevant features for classifying examples

• Each x is a list of (attribute, value) pairs. For example, 
X = [Person:Sue, EyeColor:Brown, Age:Young, Sex:Female] 

• The number of attributes (a.k.a. features) is fixed (positive, 
finite)

• Each attribute has a fixed, finite number of possible values (or
could be continuous)

• Each example can be interpreted as a point in an n-
dimensional feature space, where n is the number of 
attributes
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Inductive learning as search

• Instance space I defines the language for the training and 
test instances
– Typically, but not always, each instance i∈I is a feature vector
– Features are sometimes called attributes or variables
– I: V1 x V2 x … x Vk, i = (v1, v2, …, vk)

• Class variable C gives an instance’s class (to be predicted)
• Model space M defines the possible classifiers

– M: I → C, M = {m1, … mn} (possibly infinite)
– Model space is sometimes, but not always, defined in terms of the 

same features as the instance space
• Training data can be used to direct the search for a good 

(consistent, complete, simple) hypothesis in the model 
space
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Model spaces
• Decision trees

– Partition the instance space into axis-parallel regions, labeled with 
class value

• Version spaces
– Search for necessary (lower-bound) and sufficient (upper-bound) 

partial instance descriptions for an instance to be a member of the 
class

• Nearest-neighbor classifiers
– Partition the instance space into regions defined by the centroid 

instances (or cluster of k instances)
• Associative rules (feature values → class)
• First-order logical rules
• Bayesian networks (probabilistic dependencies of class on 

attributes)
• Neural networks
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Inductive learning and bias

• Suppose that we want to learn a function f(x) = y and we 
are given some sample (x,y) pairs, as in figure (a)

• There are several hypotheses we could make about this 
function, e.g.: (b),  (c) and (d)

• A preference for one over the others reveals the bias of our 
learning technique, e.g.:
– prefer piece-wise functions
– prefer a smooth function
– prefer a simple function and treat outliers as noise
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Preference bias: Ockham’s Razor

• A.k.a. Occam’s Razor, Law of Economy, or Law of 
Parsimony

• Principle stated by William of Ockham (1285-1347/49), a 
scholastic, that 
– “non sunt multiplicanda entia praeter necessitatem” 
– or, entities are not to be  multiplied beyond necessity

• The simplest consistent explanation is the best
• Therefore, the smallest decision tree that correctly classifies 

all of the training examples is best. 
• Finding the provably smallest decision tree is NP-hard, so 

instead of constructing the absolute smallest tree consistent 
with the training examples, construct one that is pretty small
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Learning decision trees
•Goal: Build a decision tree to classify examples as 
positive or negative instances of a concept using 
supervised learning from a training set

•A decision tree is a tree where
– each non-leaf node has associated
with it an attribute (feature)

–each leaf node has associated
with it a classification (+ or -)

–each arc has associated with it one
of the possible values of the attribute
at the node from which the arc is directed 

•Generalization: allow for >2 classes
–e.g., for stocks, classify into {sell, hold, buy}
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Decision tree-induced partition – example
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Expressiveness
• Decision trees can express any function of the input attributes.
• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with 
one path to leaf for each example (unless f nondeterministic in x) but it 
probably won't generalize to new examples

• We prefer to find more compact decision trees
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Hypothesis spaces
• How many distinct decision trees with n Boolean 

attributes?
– = number of Boolean functions
– = number of distinct truth tables with 2n rows = 22n

– e.g., with 6 Boolean attributes, 18,446,744,073,709,551,616 trees
• How many conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)?

– Each attribute can be in (positive), in (negative), or out
⇒3n distinct conjunctive hypotheses

– e.g., with 6 Boolean attributes, 729 trees
• A more expressive hypothesis space

– increases chance that target function can be expressed
– increases number of hypotheses consistent with training set
⇒ may get worse predictions in practice
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R&N’s restaurant domain
• Develop a decision tree to model the decision a 

patron makes when deciding whether or not to wait 
for a table at a restaurant

• Two classes: wait, leave
• Ten attributes: Alternative available? Bar in 

restaurant? Is it Friday? Are we hungry? How full 
is the restaurant? How expensive? Is it raining? Do 
we have a reservation? What type of restaurant is 
it? What’s the purported waiting time?

• Training set of 12 examples
• ~ 7000 possible cases 
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A decision tree
from introspection
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Attribute-based representations

• Examples described by attribute values (Boolean, discrete, continuous)
– E.g., situations where I will/won't wait for a table

• Classification of examples is positive (T) or negative (F)
• Serves as a training set
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ID3 Algorithm
• A greedy algorithm for decision tree construction 

developed by Ross Quinlan circa 1987 
• Top-down construction of decision tree by recursively 

selecting “best attribute” to use at the current node in tree
– Once attribute is selected for current node, generate 

child nodes, one for each possible value of selected 
attribute

– Partition examples using the possible values of this 
attribute, and assign these subsets of the examples to 
the appropriate child node

– Repeat for each child node until all examples associated 
with a node are either all positive or all negative
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Choosing the best attribute
• The key problem is choosing which attribute to 

split a given set of examples
• Some possibilities are:

– Random: Select any attribute at random 
– Least-Values: Choose the attribute with the smallest 

number of possible values 
– Most-Values: Choose the attribute with the largest 

number of possible values 
– Max-Gain: Choose the attribute that has the largest 

expected information gain–i.e., the attribute that will 
result in the smallest expected size of the subtrees rooted 
at its children

• The ID3 algorithm uses the Max-Gain method of 
selecting the best attribute
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Choosing an attribute

• Idea: a good attribute splits the examples into 
subsets that are (ideally) "all positive" or "all 
negative“

Patrons? is a better choice than type?
24

ID3-induced 
decision tree
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Information theory 101
• Information is measured in bits
• If there are n equally probable possible messages, then the 

probability p of each is 1/n
• Information conveyed by a message is -log(p) = log(n)

– e.g., with 16 messages, then log(16) = 4 and we need 4 
bits to identify/send each message

• In general, given a probability distribution for the n 
messages  P = (p1, p2, .., pn) 

• Then the information conveyed by the distribution (aka 
entropy of P) is: 
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
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Information theory 101
• Information theory sprang almost fully formed from the 

seminal work of Claude E. Shannon at Bell Labs
– classic paper "A Mathematical Theory of Communication“, Bell 

System Technical Journal, 1948. 
• Intuitions

– Common words (a, the, dog) are shorter than less common ones 
(parlimentarian, foreshadowing)

– In Morse code, common (probable) letters have shorter encodings
• Information is measured in minimum number of bits needed to 

store or send some information
• Wikipedia: he measure of data, known as information entropy, 

is usually expressed by the average number of bits needed for 
storage or communication. 
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Information theory II
• Information conveyed by distribution (a.k.a. entropy of P): 

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
• Examples:

– If P is (0.5, 0.5) then I(P) is 1
– If P is (0.67, 0.33) then I(P) is 0.92
– If P is (1, 0) then I(P) is 0

• The more uniform the probability distribution, the greater 
its information: More information is conveyed by a message 
telling you which event actually occurred

• Entropy is the average number of bits/message needed to 
represent a stream of messages
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Huffman code
• In 1952 MIT student David Huffman devised, in the course 

of doing a homework assignment, an elegant coding scheme 
which is optimal in the case where all symbols’ probabilities 
are integral powers of 1/2. 

• A Huffman code can be built in the following manner:
– Rank all symbols in order of probability of occurrence
– Successively combine the two symbols of the lowest 

probability to form a new composite symbol; eventually 
we will build a binary tree where each node is the 
probability of all nodes beneath it

– Trace a path to each leaf, noticing the direction at each 
node
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Huffman code example
Msg. Prob.
A .125
B .125
C .25
D .5

.5.5

1

.125.125

.25

A

C

B

D
.25

0 1

0

0 1

1

M code length prob
A 000 3 0.125 0.375
B 001 3 0.125 0.375
C 01 2 0.250 0.500
D 1 1 0.500 0.500

average message length 1.750

If we use this code to many 
messages (A,B,C or D) with this 
probability distribution, then, over 
time, the average bits/message 
should approach 1.75
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Information for classification
• If a set T of records is partitioned into disjoint exhaustive 

classes (C1,C2,..,Ck) on the basis of the value of the class 
attribute, then the information needed to identify the class of 
an element of T is 
Info(T) = I(P)

where P is the probability distribution of partition (C1,C2,..,Ck): 
P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|)

C1
C2

C3

C1
C2

C3

High information
Low information
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Information for classification II

• If we partition T w.r.t attribute X into sets {T1,T2, ..,Tn} 
then the information needed to identify the class of an 
element of T becomes the weighted average of the 
information needed to identify the class of an element of Ti, 
i.e. the weighted average of Info(Ti): 

Info(X,T) = Σ|Ti|/|T| * Info(Ti)

C1
C2

C3
C1

C2

C3

High information Low information
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Information gain
• Consider the quantity Gain(X,T) defined as

Gain(X,T) = Info(T) - Info(X,T)
• This represents the difference between 

– information needed to identify an element of T and 
– information needed to identify an element of T after the value of attribute X 

has been obtained
That is, this is the gain in information due to attribute X
• We can use this to rank attributes and to build decision trees where at each 

node is located the attribute with greatest gain among the attributes not yet 
considered in the path from the root

• The intent of this ordering is:
– To create small decision trees so that records can be identified after only a few 

questions
– To match a hoped-for minimality of the process represented by the records 

being considered (Occam’s Razor)
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Computing information gain
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

YN

N

N

N

N

N

•I(T) = 
- (.5 log .5 + .5 log .5)
= .5 + .5 = 1

•I (Pat, T) = 
1/6 (0) + 1/3 (0) + 

1/2 (- (2/3 log 2/3 + 
1/3 log 1/3)) 

=   1/2 (2/3*.6 + 
1/3*1.6) 

= .47

•I (Type, T) = 
1/6 (1) + 1/6 (1) + 
1/3 (1) + 1/3 (1) = 1

Gain (Pat, T) = 1 - .47 = .53
Gain (Type, T) = 1 – 1 = 0
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The ID3 algorithm is used to build a decision tree, given a set of non-categorical attributes 
C1, C2, .., Cn, the class attribute C, and a training set T of records.

function ID3 (R: a set of input attributes,

C: the class attribute,
S: a training set) returns a decision tree;

begin
If S is empty, return a single node with value Failure;
If every example in S has the same value for C, return 
single node with that value;

If R is empty, then return a single node with most
frequent of the values of C found in examples S; 
[note: there will be errors, i.e., improperly classified
records];

Let D be attribute with largest Gain(D,S) among attributes in R;

Let {dj| j=1,2, .., m} be the values of attribute D;
Let {Sj| j=1,2, .., m} be the subsets of S consisting 

respectively of records with value dj for attribute D;
Return a tree with root labeled D and arcs labeled 

d1, d2, .., dm going respectively to the trees 
ID3(R-{D},C,S1), ID3(R-{D},C,S2) ,.., ID3(R-{D},C,Sm);

end ID3;
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How well does it work?

Many case studies have shown that decision trees are 
at least as accurate as human experts. 
– A study for diagnosing breast cancer had humans 

correctly classifying the examples 65% of the 
time; the decision tree classified 72% correct

– British Petroleum designed a decision tree for gas-
oil separation for offshore oil platforms that  
replaced an earlier  rule-based expert system

– Cessna designed an airplane flight controller using 
90,000 examples and 20 attributes per example
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Extensions of the decision tree 
learning algorithm

• Using gain ratios
• Real-valued data
• Noisy data and overfitting
• Generation of rules
• Setting parameters
• Cross-validation for experimental validation of performance
• C4.5 is an extension of ID3 that accounts for  unavailable 

values, continuous attribute value ranges, pruning of 
decision trees, rule derivation, and so on
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Using gain ratios
• The information gain criterion favors attributes that have a large 

number of values
– If we have an attribute D that has a distinct value for each 

record, then Info(D,T) is 0, thus Gain(D,T) is maximal
• To compensate for this Quinlan suggests using the following 

ratio instead of Gain:
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)

• SplitInfo(D,T) is the information due to the split of T on the 
basis of value of categorical attribute D

SplitInfo(D,T)  =  I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|)
where {T1, T2, .. Tm} is the partition of T induced by value of D
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Computing gain ratio
French

Italian

Thai

Burger

Empty Some Full

Y

Y

Y

Y

Y

YN

N

N

N

N

N

•I(T) = 1

•I (Pat, T) = .47

•I (Type, T) = 1

Gain (Pat, T) =.53
Gain (Type, T) = 0

SplitInfo (Pat, T) = - (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2) = 1/6*2.6 + 1/3*1.6 + 1/2*1
= 1.47

SplitInfo (Type, T) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3
= 1/6*2.6 + 1/6*2.6 + 1/3*1.6 + 1/3*1.6 = 1.93

GainRatio (Pat, T) = Gain (Pat, T) / SplitInfo(Pat, T) = .53 / 1.47 = .36

GainRatio (Type, T) = Gain (Type, T) / SplitInfo (Type, T) = 0 / 1.93 = 0
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Real-valued data
• Select a set of thresholds defining intervals
• Each interval becomes a discrete value of the attribute
• Use some simple heuristics…

– always divide into quartiles

• Use domain knowledge…
– divide age into infant (0-2), toddler (3 - 5), school-aged (5-8)

• Or treat this as another learning problem 
– Try a range of ways to discretize the continuous variable and 

see which yield “better results” w.r.t. some metric
– E.g., try midpoint between every pair of values
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Noisy data and overfitting
• Many kinds of “noise” can occur in the examples:

– Two examples have same attribute/value pairs, but different classifications 
– Some values of attributes are incorrect because of errors in the data 

acquisition process or the preprocessing phase 
– The classification is wrong (e.g., + instead of -) because of some error 
– Some attributes are irrelevant to the decision-making process, e.g., color of 

a die is irrelevant to its outcome

• The last problem, irrelevant attributes, can result in overfitting 
the training example data. 
– If the hypothesis space has many dimensions because of a large number of 

attributes, we may find meaningless regularity in the data that is 
irrelevant to the true, important, distinguishing features

– Fix by pruning lower nodes in the decision tree
– For example, if Gain of the best attribute at a node is below a threshold, 

stop and make this node a leaf rather than generating children nodes
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Pruning decision trees
• Pruning of the decision tree is done by replacing a whole 

subtree by a leaf node
• The replacement takes place if a decision rule establishes 

that the expected error rate in the subtree is greater than in 
the single leaf. E.g.,
– Training: one training red success and two training blue failures
– Test: three red failures and one blue success
– Consider replacing this subtree by a single Failure node. 

• After replacement we will have only two errors instead of 
five:

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Test Pruned
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Converting decision trees to rules
• It is easy to derive a rule set from a decision tree: write a rule 

for each path in the decision tree from the root to a leaf
• In that rule the left-hand side is easily built from the label of 

the nodes and the labels of the arcs
• The resulting rules set can be simplified:

– Let LHS be the left hand side of a rule
– Let LHS' be obtained from LHS by eliminating some conditions 
– We can certainly replace LHS by LHS' in this rule if the subsets of the 

training set that satisfy respectively LHS and LHS' are equal
– A rule may be eliminated by using metaconditions such as “if no other 

rule applies”
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Evaluation methodology
• Standard methodology:

1. Collect a large set of examples (all with correct classifications)
2. Randomly divide collection into two disjoint sets:  training and test
3. Apply learning algorithm to training set giving hypothesis H
4. Measure performance of H w.r.t. test set

• Important: keep the training and test sets disjoint!
• To study the efficiency and robustness of an algorithm, repeat 

steps 2-4 for different training sets and sizes of training sets
• If you improve your algorithm, start again with step 1 to avoid 

evolving the algorithm to work well on just this collection
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Performance measurement
How do we know that h ≈ f ?

• Use theorems of computational/statistical learning theory
• Try h on a new test set of examples

Learning curve = % correct on test set as a function of training set size
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Summary: Decision tree learning
• Inducing decision trees is one of the most widely used 

learning methods in practice 
• Can out-perform human experts in many problems 
• Strengths include

– Fast
– Simple to implement
– Can convert result to a set of easily interpretable rules
– Empirically valid in many commercial products
– Handles noisy data 

• Weaknesses include:
– Univariate splits/partitioning using only one attribute at a time so limits 

types of possible trees
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors 
– Non-incremental (i.e., batch method)


