Planning

Chapter 11.1-11.3

Overview

-What is planning?

- Approaches to planning
-GPS / STRIPS
-Situation calculus formalism [revisited]
-Partial-order planning

Planning vs. problem solving

- Find a sequence of actions that achieves a given goal when executed from a given initial world state. I.e., given
- a set of operator descriptions (defining the possible primitive actions by the agent),
- an initial state description, and
- a goal state description or predicate,
compute a plan, which is
- a sequence of operator instances, such that executing them in the initial state will change the world to a state satisfying the goal-state description.
- Goals are usually specified as a conjunction of goals to be achieved
- Planning and problem solving methods can often solve the same sorts of problems
- Planning is more powerful because of the representations and methods used
- States, goals, and actions are decomposed into sets of sentences (usually in first-order logic)
- Search often proceeds through plan space rather than state space (though there are also state-space planners)
- Subgoals can be planned independently, reducing the complexity of the planning problem

Typical assumptions

- Atomic time: Each action is indivisible
- No concurrent actions are allowed (though actions do not need to be ordered with respect to each other in the plan)
- Deterministic actions: The result of actions are completely determined-there is no uncertainty in their effects
- Agent is the sole cause of change in the world
- Agent is omniscient: Has complete knowledge of the state of the world
- Closed World Assumption: everything known to be true in the world is included in the state description. Anything not listed is false.

Blocks world

The blocks world is a micro-world that consists of a table, a set of blocks and a robot hand.
Some domain constraints:

- Only one block can be on another block
- Any number of blocks can be on the table
- The hand can only hold one block

Typical representation:
ontable(a)
ontable(c)
on(b,a)
handempty
clear(b)
clear(c)

Planning as Search?

- Actions: generate successor states
- States: completely described \& only used for successor generation, heuristic fn. Evaluation \& goal testing.
- Goals: represented as a goal test and using a heuristic function

These are black boxes; we can't look inside to select actions that might be useful

- Plan representation: an unbroken sequences of actions forward from initial states (or backward from goal state)
"Get a quart of milk, a bunch of bananas and a variable-speed cordless drill."

Situation calculus planning

- Intuition: Represent the planning problem using first-order logic
-Situation calculus lets us reason about changes in the world
-Use theorem proving to "prove" that a particular sequence of actions, when applied to the situation characterizing the world state, will lead to a desired result
- This is how the "neats" approach the problem

General Problem Solver

- The General Problem Solver (GPS) system was an early planner (Newell, Shaw, and Simon, 1957)

- GPS generated actions that reduced the difference between some state and a goal state
- GPS used Means-Ends Analysis
- Compare given to desired states; select a best action to do next
- A table of differences identifies procedures to reduce types of differences
- GPS was a state space planner: it operated in the domain of state space problems specified by an initial state, some goal states, and a set of operations
- Introduced a general way to use domain knowledge to select most promising action to take next

Situation calculus

- Initial state: a logical sentence about (situation) S_{0}

$$
\operatorname{At}\left(\operatorname{Home}, \mathrm{S}_{0}\right) \wedge \neg \operatorname{Have}\left(\operatorname{Milk}, \mathrm{S}_{0}\right) \wedge \neg \operatorname{Have}\left(\text { Bananas, } \mathrm{S}_{0}\right) \wedge \neg \operatorname{Have}\left(\text { Drill, } \mathrm{S}_{0}\right)
$$

- Goal state:
$(\exists s) \operatorname{At}($ Home,s $) \wedge$ Have $($ Milk,s $) \wedge$ Have $($ Bananas,s $) \wedge$ Have(Drill,s)
- Operators are descriptions of how the world changes as a result of the agent's actions:
$\forall(\mathrm{a}, \mathrm{s}) \operatorname{Have}(\operatorname{Milk}, \operatorname{Result}(\mathrm{a}, \mathrm{s})) \Leftrightarrow$
$((a=\operatorname{Buy}($ Milk $) \wedge \operatorname{At}($ Grocery,s $)) \vee($ Have $($ Milk, s $) \wedge \mathrm{a} \neq \operatorname{Drop}($ Milk $)))$
- Result(\mathbf{a}, \mathbf{s}) names the situation resulting from executing action a in situation s.
- Action sequences are also useful: Result'(l,s) is the result of executing the list of actions (l) starting in s :
($\forall \mathrm{s}$) Result'([],s) = s
($\forall \mathrm{a}, \mathrm{p}, \mathrm{s}) \operatorname{Result}([\mathrm{a} \mid \mathrm{p}] \mathrm{s})=\operatorname{Result}(\mathrm{p}, \operatorname{Result}(\mathrm{a}, \mathrm{s}))$

Situation calculus II

- A solution is a plan that when applied to the initial state yields a situation satisfying the goal query:

At(Home, Result'($\mathrm{p}, \mathrm{S}_{0}$))
\wedge Have(Milk, Result'($\left(, \mathrm{S}_{0}\right)$)
\wedge Have(Bananas, Result' $\left(\mathrm{p}, \mathrm{S}_{0}\right)$)
\wedge Have(Drill, Result'($\mathrm{p}, \mathrm{S}_{0}$))

- Thus we would expect a plan (i.e., variable assignment through unification) such as: p = [Go(Grocery), Buy(Milk), Buy(Bananas),

Go(HardwareStore), Buy(Drill), Go(Home)]

Situation calculus planning: Analysis

- This is fine in theory, but remember that problem solving (search) is exponential in the worst case
- Also, resolution theorem proving only finds a proof (plan), not necessarily a good plan
- So we restrict the language and use a specialpurpose algorithm (a planner) rather than general theorem prover
- Since planning is a ubiquitous task for an intelligent agent, it's reasonable to develop a special purpose subsystem for it.

Situation calculus: Blocks world

- An example of a situation calculus rule for the blocks world: Clear (X, Result(A,S)) \leftrightarrow
[Clear (X, S) ^
$(\neg(\mathrm{A}=\operatorname{Stack}(\mathrm{Y}, \mathrm{X}) \vee \mathrm{A}=\operatorname{Pickup}(\mathrm{X}))$
$\vee(\mathrm{A}=\operatorname{Stack}(\mathrm{Y}, \mathrm{X}) \wedge \neg($ holding $(\mathrm{Y}, \mathrm{S}))$
$\vee(\mathrm{A}=\operatorname{Pickup}(\mathrm{X}) \wedge \neg($ handempty $(\mathrm{S}) \wedge$ ontable $(\mathrm{X}, \mathrm{S}) \wedge \operatorname{clear}(\mathrm{X}, \mathrm{S}))))]$
$\vee[\mathrm{A}=\operatorname{Stack}(\mathrm{X}, \mathrm{Y}) \wedge$ holding $(\mathrm{X}, \mathrm{S}) \wedge \operatorname{clear}(\mathrm{Y}, \mathrm{S})]$
$\vee[\mathrm{A}=\mathrm{Unstack}(\mathrm{Y}, \mathrm{X}) \wedge$ on $(\mathrm{Y}, \mathrm{X}, \mathrm{S}) \wedge \operatorname{clear}(\mathrm{Y}, \mathrm{S}) \wedge$ handempty $(\mathrm{S})]$
$\vee[\mathrm{A}=\mathrm{Putdown}(\mathrm{X}) \wedge$ holding $(\mathrm{X}, \mathrm{S})]$
- English translation: A block is clear if (a) in the previous state it was clear and we didn't pick it up or stack something on it successfully, or (b) we stacked it on something else successfully, or (c) something was on it that we unstacked successfully, or (d) we were holding it and we put it down.
- Whew!!! There’s gotta be a better way!

Strips planning representation

- Classic approach first used in the STRIPS (Stanford Research Institute Problem Solver) planner
- A State is a conjunction of ground literals at(Home) $\wedge \neg$ have(Milk) $\wedge \neg$ have(bananas) ..
- Goals are conjunctions of literals, but may have variables, assumed to be existentially quantified
 at(?x) ^ have(Milk) ^ have(bananas) ...
- Do not need to fully specify state
- Non-specified either don't-care or assumed false
- Represent many cases in small storage
- Often only represent changes in state rather than entire situation
- Unlike theorem prover, not seeking whether the goal is true, but is there a sequence of actions to attain it

Operator/action representation

- Operators contain three components:

-Action description

-Precondition - conjunction of positive literals
-Effect - conjunction of positive or negative literals describing how situation changes when operator is applied
 Effect: At(there) $\wedge \neg$ At(here) \downarrow ntified

- All variables are universally quantified
- Situation variables are implicit
-preconditions must be true in the state immediately before operator is applied; effects are true immediately after

Blocks world operators

- Here are the classic basic operations for the blocks world:
- stack(X,Y): put block X on block Y
- unstack(X,Y): remove block X from block Y
- pickup(X): pickup block X
- putdown(X): put block X on the table
- Each will be represented by
- a list of preconditions
- a list of new facts to be added (add-effects)
- a list of facts to be removed (delete-effects)
- optionally, a set of (simple) variable constraints
- For example:
preconditions(stack(X,Y), [holding(X), clear(Y)])
deletes(stack(X,Y), [holding(X), clear(Y)]).
adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
constraints(stack (X, Y), $[\mathrm{X} \neq \mathrm{Y}, \mathrm{Y} \neq$ table, $\mathrm{X} \neq$ table $])$

Blocks world operators II

operator(stack(X,Y),

Precond [holding(X), clear(Y)], Add [handempty, on(X,Y), clear(X)],
Delete [holding(X), clear(Y)],
Constr $[\mathrm{X} \neq \mathrm{Y}, \mathrm{Y} \neq$ table, $\mathrm{X} \neq$ table $]$).
operator(pickup(X),
[ontable(X), clear(X), handempty], [holding(X)],
[ontable(X), clear(X), handempty],
[$\mathrm{X} \neq$ table]).
operator(unstack(X,Y), [on(X,Y), clear(X), handempty], [holding(X), clear(Y)], handempty, clear(X), on(X,Y)], [$\mathrm{X} \neq \mathrm{Y}, \mathrm{Y} \neq$ table, $\mathrm{X} \neq$ table $]$).
operator(putdown(X),
[holding(X)],
[ontable(X), handempty, clear(X)], [holding(X)],
[$\mathrm{X} \neq$ table]).

STRIPS planning

- STRIPS maintains two additional data structures:
- State List - all currently true predicates.
- Goal Stack - a push down stack of goals to be solved, with current goal on top of stack.
- If current goal is not satisfied by present state, examine add lists of operators, and push operator and preconditions list on stack. (Subgoals)
- When a current goal is satisfied, POP it from stack.
- When an operator is on top stack, record the application of that operator on the plan sequence and use the operator's add and delete lists to update the current state.

Typical BW planning problem

STRIPS

\% strips(+Goals, +InitState, -Plan) strips(Goal, InitState, Plan):strips(Goal, InitState, [], _, RevPlan), reverse(RevPlan, Plan).
\% strips(+Goals,+State,+Plan,-NewState, NewPlan)
\% Finished if each goal in Goals is true
\% in current State.
strips(Goals, State, Plan, State, Plan) :-
subset(Goals,State).
strips(Goals, State, Plan, NewState, NewPlan):\% Goal is an unsatisfied goal. member(Goal, Goals),
$(\+$ member(Goal, State)),
$\%$ Op is an Operator with Goal as a result. operator(Op, Preconditions, Adds, Deletes,_), member(Goal,Adds),
\% Achieve the preconditions
strips(Preconditions, State, Plan, TmpState1, TmpPlan1),
\% Apply the Operator
diff(TmpState1, Deletes, TmpState2), union(Adds, TmpState2, TmpState3) \% Continue planning.
strips(GoalList, TmpState3, [Op|TmpPlan1], NewState, NewPlan).

Trace

strips([on(b,c),on(a,b),ontable(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve on((b, c) via stack(b,c) with preconds: [holding(b),clear(c)]
strips([holding(b),clear(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]
strips([ontable(b),clear(b),handempty],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[]) Applying pickup(b)
strips([holding(b),clear(c)),[clear(a),clear(c),holding(b),ontable(a),ontable(c)),[pickup(b)])
Applying stack(b,c)
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
strips(hholding(a),clear(b)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c))],[stack(b,c),pickup(b)]) Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
strips([ontable(a),clear(a),handempty],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])

Applying pickup(a)
strips([holding(a),clear(b)],[clear(b),holding(a),ontable(c),on(b,c))],[pickup(a),stack(b,c),pickup(b)]]
Applying stack(a,b)
srips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),ontable(c),on(a,b),on(b,c)],[stack(a,b),pickup(a),stack(b,c),pickup(b)])

Another BW planning problem

Yet Another BW planning problem

Goal interaction

- Simple planning algorithms assume that goals to be achieved are independent
- Each can be solved separately and then the solutions concatenated
- This planning problem, called the "Sussman Anomaly," is the classic example of the goal interaction problem:
- Solving on(A,B) first (via unstack(C,A), stack(A,B)) is undone when solving the second goal on(B,C) (via unstack(A,B), stack(B,C)).
- Solving on(B,C) first will be undone when solving on(A,B)
- Classic STRIPS could not handle this, although minor modifications can get it to do simple cases

Initial state
Goal state

Sussman Anomaly

- Classic Strips assumed that once a goal had been satisfied it would stay satisfied.
- Our simple Prolog version selects any currently unsatisfied goal to tackle at each iteration.
- This can handle this problem, at the expense of looping for other problems.
- What's needed? -- a notion of "protecting" a subgoal so that it isn't undone by some later step.

State-space planning

- STRIPS searches thru a space of situations (where you are, what you have, etc.)
- The plan is a solution found by "searching" through the situations to get to the goal
- A progression planner searches forward from initial state to goal state
- Usually results in a high branching factor
- A regression planner searches backward from the goal - OK if operators have enough information to go both ways
- Ideally this leads to reduced branching -you are only considering things that are relevant to the goal
- Handling a conjunction of goals is difficult (e.g., STRIPS)

Partial-order planning

- An alternative is to search through the space of plans, rather than situations.
- Start from a partial plan which is expanded and refined until a complete plan that solves the problem is generated.
- Refinement operators add constraints to the partial plan and modification operators for other changes.
- We can still use STRIPS-style operators: Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn) Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) Op(ACTION: LeftSock, EFFECT: leftSockOn)
could result in a partial plan of
[... RightShoe ... LeftShoe ...]
- A linear planner builds a plan as a totally ordered sequence of plan steps
- A non-linear planner (aka partial-order planner) builds up a plan as a set of steps with some temporal constraints
- constraints like S1<S2 if step S1 must come before S2.
- One refines a partially ordered plan (POP) by either:
- adding a new plan step, or
- adding a new constraint to the steps already in the plan.
- A POP can be linearized (converted to a totally ordered plan) by topological sorting

A simple graphical notation

(a)

(b)

Partial Order Plan vs. Total Order Plan

Partial Order Plan:
Total Order Plans:

The space of POPs is smaller than TOPs and hence involve less search

Least commitment

- Non-linear planners embody the principle of least commitment
- only choose actions, orderings, and variable bindings absolutely necessary, leaving other decisions till later
- avoids early commitment to decisions that don't really matter
- A linear planner always chooses to add a plan step in a particular place in the sequence
- A non-linear planner chooses to add a step and possibly some temporal constraints

Non-linear plan

- A non-linear plan consists of
(1) A set of steps $\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4} \ldots\right\}$

Steps have operator descriptions, preconditions and post-conditions
(2) A set of causal links $\left\{\ldots\left(\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}\right) \ldots\right\}$

Meaning: purpose of step S_{i} is to achieve precondition C of step S_{j}
(3) A set of ordering constraints $\left\{\ldots \mathrm{S}_{\mathrm{i}}<\mathrm{S}_{\mathrm{j}} \ldots\right\}$
step S_{i} must come before step S_{j}

- A non-linear plan is complete iff
- Every step mentioned in (2) and (3) is in (1)
- If S_{j} has prerequisite C , then there exists a causal link in (2) of the form ($\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}$) for some S_{i}
- If ($\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}$) is in (2) and step S_{k} is in (1), and S_{k} threatens ($\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}$) (makes C false), then (3) contains either $S_{k}<S_{i}$ or $S_{j}<S_{k}$

The initial plan

Every plan starts the same way
Initial State

Trivial example

Operators:
Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) Op(ACTION: LeftSock, EFFECT: leftSockOn)

Steps: \{S1:[Op(Action:Start)],
S2:[Op(Action:Finish,
Pre: RightShoeOn \wedge LeftShoeOn)]\}

RightShoeOn \wedge LeftShoeOn
Links: \{\}
Orderings: \{S1<S2\}

POP constraints and search heuristics

- Only add steps that achieve a currently unachieved precondition
- Use a least-commitment approach:
- Don't order steps unless they need to be ordered
- Honor causal links $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$ that protect condition c :
- Never add an intervening step S_{3} that violates c
- If a parallel action threatens c (i.e., has the effect of negating or clobbering c), resolve that threat by adding ordering links:
- Order S_{3} before S_{1} (demotion)
- Order S_{3} after S_{2} (promotion)

Partial-order planning example

- Initially: at home; SM sells bananas, milk; HWS sells drills
- Goal: Have milk, bananas, and a drill

Start

At(Home) Sells(SM, Banana) \quad Sells(SM,Milk) Sells(HWS,Drill)
Have(Drill) Have(Milk) Have(Banana) At(Home)
Finish


```
    مthmtMaxEMmaul-PLuncinimul,gel
```



```
    MESOLYETHREMTS p&tin)
end
    Tictan
    pick aplan ntep Serut fon Stusk plem
    retum Suace
```



```
    Iflmet in nosehn Hep then fail
    dithe cusal ints senem sil
```



```
    Macmbon:AddS
end
```


How to identify a dead end?

(a)

The S_{3} action threatens the c precondition of S_{2} if S_{3} neither precedes nor follows S_{2} and S_{3} has an effect that negates c.

(b)

Demotion

Resolving a threat

