
1

1

PlanningPlanning
Chapter 11.1-11.3

Some material adopted from notes
by Andreas Geyer-Schulz

and Chuck Dyer 2

Overview
• What is planning?
• Approaches to planning

–GPS / STRIPS
–Situation calculus formalism [revisited]
–Partial-order planning

3

Planning problem
• Find a sequence of actions that achieves a given goal

when executed from a given initial world state. I.e.,
given
– a set of operator descriptions (defining the possible primitive

actions by the agent),
– an initial state description, and
– a goal state description or predicate,

compute a plan, which is
– a sequence of operator instances, such that executing them in

the initial state will change the world to a state satisfying the
goal-state description.

• Goals are usually specified as a conjunction of goals to
be achieved

4

Planning vs. problem solving
• Planning and problem solving methods can often

solve the same sorts of problems
• Planning is more powerful because of the

representations and methods used
• States, goals, and actions are decomposed into sets

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather

than state space (though there are also state-space
planners)

• Subgoals can be planned independently, reducing
the complexity of the planning problem

2

5

Typical assumptions
• Atomic time: Each action is indivisible
• No concurrent actions are allowed (though actions do

not need to be ordered with respect to each other in the
plan)

• Deterministic actions: The result of actions are
completely determined—there is no uncertainty in their
effects

• Agent is the sole cause of change in the world
• Agent is omniscient: Has complete knowledge of the

state of the world
• Closed World Assumption: everything known to be true

in the world is included in the state description. Anything
not listed is false.

6

Blocks world
The blocks world is a micro-world that consists of a table, a set of

blocks and a robot hand.
Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

Typical representation:
ontable(a)
ontable(c)
on(b,a)
handempty
clear(b)
clear(c)

A
B

C
TABLE

This is meant to be a very simple model!

7

Major approaches
• Planning as search?
• GPS / STRIPS
• Situation calculus
• Partial order planning
• Hierarchical decomposition (HTN planning)
• Planning with constraints (SATplan, Graphplan)
• Reactive planning

8

Planning as Search?
• Actions: generate successor states
• States: completely described & only used for

successor generation, heuristic fn. Evaluation &
goal testing.

• Goals: represented as a goal test and using a
heuristic function

These are black boxes; we can’t look inside to
select actions that might be useful

• Plan representation: an unbroken sequences of
actions forward from initial states (or backward
from goal state)

3

9

“Get a quart of milk, a bunch of bananas
and a variable-speed cordless drill.”

10

General Problem Solver
• The General Problem Solver (GPS)

system was an early planner
(Newell, Shaw, and Simon, 1957)

• GPS generated actions that reduced the difference between
some state and a goal state

• GPS used Means-Ends Analysis
– Compare given to desired states; select a best action to do next
– A table of differences identifies procedures to reduce types of

differences
• GPS was a state space planner: it operated in the domain

of state space problems specified by an initial state, some
goal states, and a set of operations

• Introduced a general way to use domain knowledge to
select most promising action to take next

11

Situation calculus planning
• Intuition: Represent the planning problem

using first-order logic
–Situation calculus lets us reason about

changes in the world
–Use theorem proving to “prove” that a

particular sequence of actions, when applied
to the situation characterizing the world
state, will lead to a desired result

• This is how the “neats” approach the problem

12

Situation calculus
• Initial state: a logical sentence about (situation) S0

At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬ Have(Bananas, S0) ∧ ¬ Have(Drill, S0)

• Goal state:
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s)

• Operators are descriptions of how the world changes as a result of
the agent’s actions:
∀(a,s) Have(Milk,Result(a,s)) ⇔

((a=Buy(Milk) ∧ At(Grocery,s)) ∨ (Have(Milk, s) ∧ a ≠ Drop(Milk)))

• Result(a,s) names the situation resulting from executing action a in
situation s.

• Action sequences are also useful: Result'(l,s) is the result of
executing the list of actions (l) starting in s:
(∀s) Result'([],s) = s
(∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))

4

13

Situation calculus II
• A solution is a plan that when applied to the initial

state yields a situation satisfying the goal query:
At(Home, Result'(p,S0))
∧ Have(Milk, Result'(p,S0))
∧ Have(Bananas, Result'(p,S0))
∧ Have(Drill, Result'(p,S0))

• Thus we would expect a plan (i.e., variable
assignment through unification) such as:

p = [Go(Grocery), Buy(Milk), Buy(Bananas),
Go(HardwareStore), Buy(Drill), Go(Home)]

14

Situation calculus: Blocks world
• An example of a situation calculus rule for the blocks world:

Clear (X, Result(A,S)) ↔
[Clear (X, S) ∧
(¬(A=Stack(Y,X) ∨ A=Pickup(X))
∨ (A=Stack(Y,X) ∧ ¬(holding(Y,S))
∨ (A=Pickup(X) ∧ ¬(handempty(S) ∧ ontable(X,S) ∧ clear(X,S))))]
∨ [A=Stack(X,Y) ∧ holding(X,S) ∧ clear(Y,S)]
∨ [A=Unstack(Y,X) ∧ on(Y,X,S) ∧ clear(Y,S) ∧ handempty(S)]
∨ [A=Putdown(X) ∧ holding(X,S)]

• English translation: A block is clear if (a) in the previous state it
was clear and we didn’t pick it up or stack something on it
successfully, or (b) we stacked it on something else successfully,
or (c) something was on it that we unstacked successfully, or (d)
we were holding it and we put it down.

• Whew!!! There’s gotta be a better way!

15

Situation calculus planning: Analysis

• This is fine in theory, but remember that problem
solving (search) is exponential in the worst case

• Also, resolution theorem proving only finds a
proof (plan), not necessarily a good plan

• So we restrict the language and use a special-
purpose algorithm (a planner) rather than general
theorem prover

• Since planning is a ubiquitous task for an
intelligent agent, it’s reasonable to develop a
special purpose subsystem for it.

16

Strips planning representation
• Classic approach first used in the STRIPS

(Stanford Research Institute Problem Solver) planner
• A State is a conjunction of ground literals

at(Home) ∧ ¬have(Milk) ∧ ¬have(bananas) ...
• Goals are conjunctions of literals, but may have

variables, assumed to be existentially quantified
at(?x) ∧ have(Milk) ∧ have(bananas) ...

• Do not need to fully specify state
– Non-specified either don’t-care or assumed false
– Represent many cases in small storage
– Often only represent changes in state rather than entire

situation
• Unlike theorem prover, not seeking whether the goal is true, but

is there a sequence of actions to attain it

Shakey the robot

5

17

Operator/action representation
• Operators contain three components:

–Action description
–Precondition - conjunction of positive literals
–Effect - conjunction of positive or negative literals describing

how situation changes when operator is applied
• Example:

Op[Action: Go(there),
Precond: At(here) ∧ Path(here,there),
Effect: At(there) ∧ ¬At(here)]

• All variables are universally quantified
• Situation variables are implicit

–preconditions must be true in the state immediately before
operator is applied; effects are true immediately after

Go(there)

At(here) ,Path(here,there)

At(there) , ¬At(here)

18

Blocks world operators
• Here are the classic basic operations for the blocks world:

– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

• Each will be represented by
– a list of preconditions
– a list of new facts to be added (add-effects)
– a list of facts to be removed (delete-effects)
– optionally, a set of (simple) variable constraints

• For example:
preconditions(stack(X,Y), [holding(X), clear(Y)])
deletes(stack(X,Y), [holding(X), clear(Y)]).
adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
constraints(stack(X,Y), [X≠Y, Y≠table, X≠table])

19

Blocks world operators II

operator(stack(X,Y),
Precond [holding(X), clear(Y)],
Add [handempty, on(X,Y), clear(X)],
Delete [holding(X), clear(Y)],
Constr [X≠Y, Y≠table, X≠table]).

operator(pickup(X),
[ontable(X), clear(X), handempty],
[holding(X)],
[ontable(X), clear(X), handempty],
[X≠table]).

operator(unstack(X,Y),
[on(X,Y), clear(X), handempty],
[holding(X), clear(Y)],
[handempty, clear(X), on(X,Y)],
[X≠Y, Y≠table, X≠table]).

operator(putdown(X),
[holding(X)],
[ontable(X), handempty, clear(X)],
[holding(X)],
[X≠table]).

20

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - a push down stack of goals to be solved,

with current goal on top of stack.

• If current goal is not satisfied by present state,
examine add lists of operators, and push operator
and preconditions list on stack. (Subgoals)

• When a current goal is satisfied, POP it from stack.
• When an operator is on top stack, record the

application of that operator on the plan sequence
and use the operator’s add and delete lists to update
the current state.

6

21

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

22

Trace
strips([on(b,c),on(a,b),ontable(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]

strips([holding(b),clear(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]

strips([ontable(b),clear(b),handempty],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Applying pickup(b)
strips([holding(b),clear(c)],[clear(a),clear(c),holding(b),ontable(a),ontable(c)],[pickup(b)])

Applying stack(b,c)
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

strips([holding(a),clear(b)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])
Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]

strips([ontable(a),clear(a),handempty],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(
b)])

Applying pickup(a)
strips([holding(a),clear(b)],[clear(b),holding(a),ontable(c),on(b,c)],[pickup(a),stack(b,c),pickup(b)])

Applying stack(a,b)
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),ontable(c),on(a,b),on(b,c)],[stack(a,b),pickup(a),stack(b,c),pickup(

b)])

23

STRIPS
% strips(+Goals, +InitState, -Plan)
strips(Goal, InitState, Plan):-

strips(Goal, InitState, [], _, RevPlan),
reverse(RevPlan, Plan).

% strips(+Goals,+State,+Plan,-NewState, NewPlan)

% Finished if each goal in Goals is true
% in current State.
strips(Goals, State, Plan, State, Plan) :-

subset(Goals,State).

strips(Goals, State, Plan, NewState, NewPlan):-
% Goal is an unsatisfied goal.
member(Goal, Goals),
(\+ member(Goal, State)),
% Op is an Operator with Goal as a result.
operator(Op, Preconditions, Adds, Deletes,_),
member(Goal,Adds),
% Achieve the preconditions
strips(Preconditions, State, Plan, TmpState1,
TmpPlan1),

% Apply the Operator
diff(TmpState1, Deletes, TmpState2),
union(Adds, TmpState2, TmpState3).
% Continue planning.
strips(GoalList, TmpState3, [Op|TmpPlan1],
NewState, NewPlan).

24

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

7

25

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

26

Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

A B
Plan:

??

27

Goal interaction
• Simple planning algorithms assume that goals to be achieved are

independent
– Each can be solved separately and then the solutions concatenated

• This planning problem, called the “Sussman Anomaly,” is the classic
example of the goal interaction problem:
– Solving on(A,B) first (via unstack(C,A), stack(A,B)) is undone when

solving the second goal on(B,C) (via unstack(A,B), stack(B,C)).
– Solving on(B,C) first will be undone when solving on(A,B)

• Classic STRIPS could not handle this, although minor modifications
can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state 28

Sussman Anomaly

A B
C Initial state

Goal state

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
||Achieve clear(a) via unstack(_1584,a) with preconds:
[on(_1584,a),clear(_1584),handempty]
||Applying unstack(c,a)
||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)]
||Applying putdown(c)
|Applying pickup(a)
Applying stack(a,b)
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]
|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]
||Achieve clear(b) via unstack(_5625,b) with preconds:
[on(_5625,b),clear(_5625),handempty]
||Applying unstack(a,b)
||Achieve handempty via putdown(_6648) with preconds: [holding(_6648)]
||Applying putdown(a)
|Applying pickup(b)
Applying stack(b,c)
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
|Applying pickup(a)
Applying stack(a,b)

From
[clear(b),clear(c),ontable(a),ontable(b),on
(c,a),handempty]

To [on(a,b),on(b,c),ontable(c)]
Do:

unstack(c,a)
putdown(c)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

A
B
C

8

29

Sussman Anomaly

• Classic Strips assumed that once a goal had been satisfied it
would stay satisfied.

• Our simple Prolog version selects any currently unsatisfied
goal to tackle at each iteration.

• This can handle this problem, at the expense of looping for
other problems.

• What’s needed? -- a notion of “protecting” a subgoal so that
it isn’t undone by some later step.

30

State-space planning
• STRIPS searches thru a space of situations (where you are,

what you have, etc.)
– The plan is a solution found by “searching” through the

situations to get to the goal
• A progression planner searches forward from initial state to

goal state
– Usually results in a high branching factor

• A regression planner searches backward from the goal
– OK if operators have enough information to go both ways
– Ideally this leads to reduced branching –you are only

considering things that are relevant to the goal
– Handling a conjunction of goals is difficult (e.g., STRIPS)

31

Plan-space planning
• An alternative is to search through the space of plans, rather

than situations.
• Start from a partial plan which is expanded and refined until a

complete plan that solves the problem is generated.
• Refinement operators add constraints to the partial plan and

modification operators for other changes.
• We can still use STRIPS-style operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

could result in a partial plan of
[… RightShoe … LeftShoe …]

32

Partial-order planning
• A linear planner builds a plan as a totally ordered

sequence of plan steps
• A non-linear planner (aka partial-order planner)

builds up a plan as a set of steps with some temporal
constraints
– constraints like S1<S2 if step S1 must come before S2.

• One refines a partially ordered plan (POP) by either:
– adding a new plan step, or
– adding a new constraint to the steps already in the plan.

• A POP can be linearized (converted to a totally
ordered plan) by topological sorting

9

33

A simple graphical notation

Start Start

Initial State

Goal State

Finish Finish

LeftShoeOn RightShoeOn

(a) (b)

34

Partial Order Plan vs. Total Order Plan

The space of POPs is smaller than TOPs and hence involve less search

35

Least commitment
• Non-linear planners embody the principle of least

commitment
– only choose actions, orderings, and variable bindings

absolutely necessary, leaving other decisions till later
– avoids early commitment to decisions that don’t

really matter
• A linear planner always chooses to add a plan step in a

particular place in the sequence
• A non-linear planner chooses to add a step and possibly

some temporal constraints

36

Non-linear plan
• A non-linear plan consists of

(1) A set of steps {S1, S2, S3, S4…}
Steps have operator descriptions, preconditions and post-conditions

(2) A set of causal links { … (Si,C,Sj) …}
Meaning: purpose of step Si is to achieve precondition C of step Sj

(3) A set of ordering constraints { … Si<Sj … }
step Si must come before step Sj

• A non-linear plan is complete iff
– Every step mentioned in (2) and (3) is in (1)
– If Sj has prerequisite C, then there exists a causal link in (2) of the

form (Si,C,Sj) for some Si

– If (Si,C,Sj) is in (2) and step Sk is in (1), and Sk threatens (Si,C,Sj)
(makes C false), then (3) contains either Sk<Si or Sj<Sk

10

37

The initial plan

Every plan starts the same way

S1:Start

S2:Finish

Initial State

Goal State

38

Trivial example
Operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

S1:Start

S2:Finish

RightShoeOn ^ LeftShoeOn

Steps: {S1:[Op(Action:Start)],

S2:[Op(Action:Finish,

Pre: RightShoeOn^LeftShoeOn)]}

Links: {}

Orderings: {S1<S2}

39

Solution

Start

Left
Sock

Right
Sock

Right
Shoe

Left
Shoe

Finish

40

POP constraints and search heuristics

• Only add steps that achieve a currently unachieved
precondition

• Use a least-commitment approach:
– Don’t order steps unless they need to be ordered

• Honor causal links S1 → S2 that protect condition c:
– Never add an intervening step S3 that violates c
– If a parallel action threatens c (i.e., has the effect of

negating or clobbering c), resolve that threat by adding
ordering links:
• Order S3 before S1 (demotion)
• Order S3 after S2 (promotion)

c

11

41

Partial-order planning example

• Initially: at home; SM sells bananas, milk; HWS sells drills
• Goal: Have milk, bananas, and a drill

Start

Finish

At(Home) Sells(SM, Banana) Sells(SM,Milk) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Banana) At(Home)

42

43

Planning
Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(s), Sells(s,Drill) At(s), Sells(s,Milk) At(s), Sells(s,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Ordering constraints

Causal links (protected)
Have light arrows at every bold arrow.

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

44

Planning

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Go(SM)Go(HWS)

At(x) At (x)

12

45

Planning

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Go(SM)Go(HWS)

At(Home) At (Home)

Impasse must backtrack & make another choice

46

How to identify a dead end?
S1

S3

S2

c
¬c

S1

S3

S2

c

¬c

S1

S3

S2

c

¬c
(a)

(b)
Demotion

(c)
Promotion

Resolving a threat
The S3 action threatens
the c precondition of S2
if S3 neither precedes
nor follows S2 and S3
has an effect that
negates c.

47

At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Bananas)

At(x)

Buy(Milk,SM) Buy(Bananas,SM)

At(l2)

Go(l2, SM)

At(l1)

Go(l1,HWS)

Buy(Drill,HWS)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Consider the threats

48

• To resolve the third threat, make Buy(Drill) precede
Go(SM)
– This resolves all three threats

Resolve a threat

At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Bananas)

At(x)

Buy(Milk,SM) Buy(Bananas,SM)

At(l2)

Go(l2, SM)

At(l1)

Go(l1,HWS)

Buy(Drill,HWS)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

To resolve the third threat, make Buy(Drill) precede Go(SM)
This resolves all three threats

13

49

Planning

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Finish

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Go(SM)Go(HWS)

At(Home) At (HWS)

Go(Home)
At(SM)

2. by promotion

1. Try to go from HWS to SM
(i.e. a different way of achieving At(x))

50

Final Plan

• Establish At(l3) with l3=SM

Buy(Milk,SM) Buy(Bananas,SM)

At(x) At(HWS)At(Home)

Go(Home,HWS)

At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Bananas)

Buy(Drill,HWS)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(SM)

Go(SM,Home)

Go(HWS,SM)

51

If 2 would try At(HWS) or
At(Home), threats could not
be resolved.

The final plan

