Knowledge Representation and Reasoning

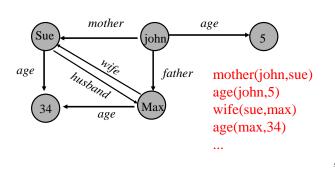
Chapters 10.1-10.3, 10.6, 10.9

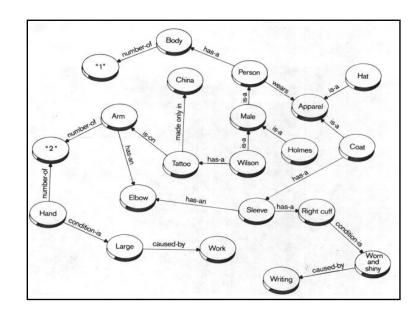
Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Introduction

- Real knowledge representation and reasoning systems come in several major varieties
- These differ in their intended use, expressivity, features,...
- · Some major families are
 - Logic programming languages
 - Theorem provers
 - Rule-based or production systems
 - Semantic networks
 - Frame-based representation languages
 - Databases (deductive, relational, object-oriented, etc.)
 - Constraint reasoning systems
 - Description logics
 - Bayesian networks
 - Evidential reasoning

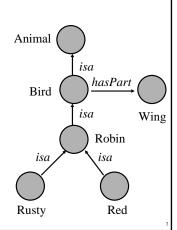
Overview

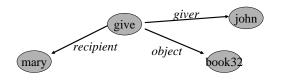

- Approaches to knowledge representation
- Deductive/logical methods
 - Forward-chaining production rule systems
 - Semantic networks
 - Frame-based systems
 - Description logics
- Abductive/uncertain methods
 - What's abduction?
 - Why do we need uncertainty?
 - Bayesian reasoning
 - Other methods: Default reasoning, rule-based methods,
 Dempster-Shafer theory, fuzzy reasoning


Semantic Networks

- A semantic network is a simple representation scheme that uses a graph of labeled nodes and labeled, directed arcs to encode knowledge.
 - Usually used to represent static, taxonomic, concept dictionaries
- Semantic networks are typically used with a special set of accessing procedures that perform "reasoning"
 - e.g., inheritance of values and relationships
- Semantic networks were very popular in the '60s and '70s but less used in the '80s and '90s. Back in the '00s as RDF
- Much less expressive than other KR formalisms: both a feature and a bug!
- The graphical depiction associated with a semantic network is a significant reason for their popularity.

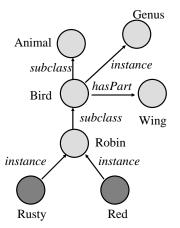
Nodes and Arcs


Arcs define binary relationships that hold between objects denoted by the nodes.


Semantic Networks

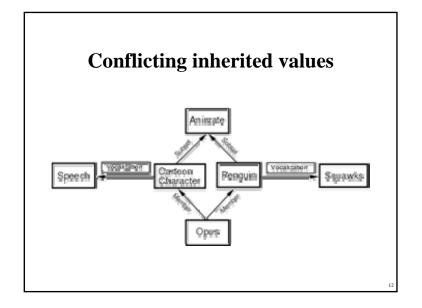
- The ISA (is-a) or AKO (a-kind-of) relation is often used to link instances to classes, classes to superclasses
- Some links (e.g. hasPart) are inherited along ISA paths.
- The *semantics* of a semantic net can be relatively informal or very formal
 - often defined at the implementation level

Reification


- Non-binary relationships can be represented by "turning the relationship into an object"
- This is an example of what logicians call "reification"
 reify v : consider an abstract concept to be real
- We might want to represent the generic give event as a relation involving three things: a giver, a recipient and an object, give(john,mary,book32)

Individuals and Classes

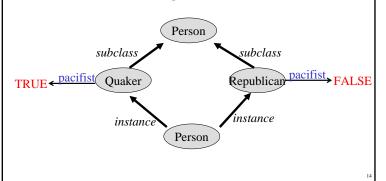
Many semantic networks distinguish


- nodes representing individuals and those representing classes
- the "subclass" relation from the "instance-of" relation

	Link types	
Link Type	Semantics	Example
A Subset B	$A \subset B$	Cats
A Member B	$A \in B$	Bill ∈ Cats
$A \xrightarrow{R} B$	R(A.B)	Bill Apr. 12
A B B	$\forall x \ x \in A \implies R(x,B)$	Birds Parent Birds
$A \stackrel{\square}{\Longrightarrow} B$	$\forall x \exists y \ x \in A \Rightarrow y \in B \land R(x,y)$	Birds Birds

Inference by Inheritance

- One of the main kinds of reasoning done in a semantic net is the inheritance of values along the subclass and instance links.
- Semantic networks differ in how they handle the case of inheriting multiple different values.
 - -All possible values are inherited, or
 - -Only the "lowest" value or values are inherited

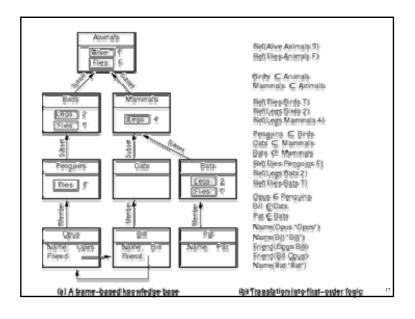

Multiple inheritance

- A node can have any number of superclasses that contain it, enabling a node to inherit properties from multiple "parent" nodes and their ancestors in the network.
- These rules are often used to determine inheritance in such "tangled" networks where multiple inheritance is allowed:
 - If X<A<B and both A and B have property P, then X inherits A's property.
 - If X<A and X<B but neither A<B nor B<A, and A and B have property P with different and inconsistent values, then X does not inherit property P at all.

13

Nixon Diamond

• This was the classic example circa 1980.



From Semantic Nets to Frames

- Semantic networks morphed into Frame Representation Languages in the '70s and '80s.
- A frame is a lot like the notion of an object in OOP, but has more meta-data.
- A frame has a set of slots.
- A **slot** represents a relation to another frame (or value).
- A slot has one or more facets.
- A **facet** represents some aspect of the relation.

Facets

- A slot in a frame holds more than a value.
- Other facets might include:
 - Value: current fillers
 - **Default:** default fillers
 - Cardinality: minimum and maximum number of fillers
 - Type: type restriction on fillers (usually expressed as another frame object)
 - Proceedures: attached procedures (if-needed, if-added, if-removed)
 - Salience: measure on the slot's importance
 - Constraints: attached constraints or axioms
- In some systems, the slots themselves are instances of frames.

Description Logics

- Description logics provide a family of frame-like KR systems with a formal semantics.
 - E.g., KL-ONE, LOOM, Classic, ...
- An additional kind of inference done by these systems is automatic classification
 - finding the right place in a hierarchy of objects for a new description
- Current systems take care to keep the languages simple, so that all inference can be done in polynomial time (in the number of objects)
 - ensuring tractability of inference
- The Semantic Web language OWL is based on description logic

Abduction

- Abduction is a reasoning process that tries to form plausible explanations for observations
 - Distinctly different from deduction and induction
 - Inherently unsound and uncertain
- Uncertainty is an important issue in abductive reasoning
- Some major formalisms for representing and reasoning about uncertainty
 - Mycin's certainty factors (an early representative)
 - Probability theory (esp. Bayesian belief networks)
 - Dempster-Shafer theory
 - Fuzzy logic
 - Truth maintenance systems
 - Nonmonotonic reasoning

Abductive reasoning

- **Definition** (Encyclopedia Britannica): reasoning that derives an explanatory hypothesis from a given set of facts
 - The inference result is a hypothesis that, if true, could explain the occurrence of the given facts
- Examples
 - Dendral, an expert system to construct 3D structure of chemical compounds
 - Fact: mass spectrometer data of the compound and its chemical formula
 - KB: chemistry, esp. strength of different types of bounds
 - Reasoning: form a hypothetical 3D structure that satisfies the chemical formula, and that would most likely produce the given mass spectrum

Abduction examples (cont.)

- -Medical diagnosis
 - Facts: symptoms, lab test results, and other observed findings (called manifestations)
 - KB: causal associations between diseases and manifestations
 - Reasoning: one or more diseases whose presence would causally explain the occurrence of the given manifestations
- Many other reasoning processes (e.g., word sense disambiguation in natural language process, image understanding, criminal investigation) can also been seen as abductive reasoning

abduction, deduction and induction

Deduction: major premise: All balls in the box are black

minor premise: These balls are from the box

conclusion: These balls are black

A => B A -----B

Abduction: rule: All balls in the box are black $A \Rightarrow B$

observation: These balls are black

explanation: These balls are from the box

A => B B ------Possibly A

Whenever

Induction: case: These balls are from the box

observation: These balls are black

hypothesized rule: All ball in the box are black

A then B
Possibly
A => B

Deduction reasons from causes to effects **Abduction** reasons from effects to causes

Induction reasons from specific cases to general rules

Characteristics of abductive reasoning

- "Conclusions" are **hypotheses**, not theorems (may be false *even if* rules and facts are true)
 - E.g., misdiagnosis in medicine
- There may be multiple plausible hypotheses
 - Given rules A => B and C => B, and fact B, both
 A and C are plausible hypotheses
 - Abduction is inherently uncertain
 - Hypotheses can be ranked by their plausibility (if it can be determined)

Reasoning as a hypothesize-and-test cycle

- **Hypothesize**: Postulate possible hypotheses, any of which would explain the given facts (or at least most of the important facts)
- Test: Test the plausibility of all or some of these hypotheses
- One way to test a hypothesis H is to ask whether something that is currently unknown-but can be predicted from H-is actually true
 - If we also know $A \Rightarrow D$ and $C \Rightarrow E$, then ask if D and E are true
 - If D is true and E is false, then hypothesis A becomes more plausible (support for A is increased; support for C is decreased)

Abduction is non-monotonic

- That is, the plausibility of hypotheses can increase/decrease as new facts are collected
- In contrast, deductive inference is **monotonic:** it never change a sentence's truth value, once known
- In abductive (and inductive) reasoning, some hypotheses may be discarded, and new ones formed, when new observations are made

25

Sources of uncertainty

- Uncertain inputs
 - Missing data
 - Noisy data
- Uncertain **knowledge**
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Default reasoning, even in deductive fashion, is uncertain
 - Incomplete deductive inference may be uncertain
- ▶ Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

6

Decision making with uncertainty

- Rational behavior:
 - For each possible action, identify the possible outcomes
 - Compute the **probability** of each outcome
 - Compute the utility of each outcome
 - Compute the probability-weighted (expected) utility over possible outcomes for each action
 - Select the action with the highest expected utility (principle of Maximum Expected Utility)

27

Bayesian reasoning

- Probability theory
- Bayesian inference
 - Use probability theory and information about independence
 - Reason diagnostically (from evidence (effects) to conclusions (causes)) or causally (from causes to effects)
- Bayesian networks
 - Compact representation of probability distribution over a set of propositional random variables
 - Take advantage of independence relationships

Other uncertainty representations

- Default reasoning
 - Nonmonotonic logic: Allow the retraction of default beliefs if they prove to be false
- · Rule-based methods
 - Certainty factors (Mycin): propagate simple models of belief through causal or diagnostic rules
- Evidential reasoning
 - Dempster-Shafer theory: Bel(P) is a measure of the evidence for P;
 Bel(¬P) is a measure of the evidence against P; together they define a belief interval (lower and upper bounds on confidence)
- Fuzzy reasoning
 - Fuzzy sets: How well does an object satisfy a vague property?
 - Fuzzy logic: "How true" is a logical statement?

Uncertainty tradeoffs

- Bayesian networks: Nice theoretical properties combined with efficient reasoning make BNs very popular; limited expressiveness, knowledge engineering challenges may limit uses
- Nonmonotonic logic: Represent commonsense reasoning, but can be computationally very expensive
- Certainty factors: Not semantically well founded
- **Dempster-Shafer theory:** Has nice formal properties, but can be computationally expensive, and intervals tend to grow towards [0,1] (not a very useful conclusion)
- Fuzzy reasoning: Semantics are unclear (fuzzy!), but has proved very useful for commercial applications