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Overview
• Model checking
• Inference in first- order logic

– Inference rules and generalized modes ponens
– Forward chaining
– Backward chaining
– Resolution

• Clausal form
• Unification
• Resolution as search
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Model checking

• Given KB, does sentence S hold?
• Basically generate and test:  

– Generate all the possible models
– Consider the models M in which KB is TRUE
– If ∀M S , then S is provably true
– If ∀M ¬S, then S is provably false
– Otherwise (∃M1 S ∧ ∃M2 ¬S): S is satisfiable

but neither provably true or provably false
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Efficient model checking
• Davis-Putnam algorithm (DPLL) is a Generate-and-test 

model checking with:
– Early termination (short-circuiting of disjunction and conjunction)
– Pure symbol heuristic: Any symbol that only appears negated or 

unnegated must be FALSE/TRUE respectively. (Can 
“conditionalize” based on instantiations already produced)

– Unit clause heuristic: Any symbol that appears in a clause by itself 
can immediately be set to TRUE or FALSE

• WALKSAT: Local search for satisfiability: Pick a symbol 
to flip (toggle TRUE/FALSE), either using min-conflicts or
choosing randomly

• …or you can use any local or global search algorithm!
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Reminder: Inference rules for FOL

• Inference rules for propositional logic apply to 
FOL as well
– Modus Ponens, And-Introduction, And-Elimination, …

• New (sound) inference rules for use with 
quantifiers: 
– Universal elimination
– Existential introduction
– Existential elimination
– Generalized Modus Ponens (GMP)

6

Automating FOL 
inference 

with Generalized 
Modus Ponens
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Automated inference for FOL

• Automated inference using FOL is harder than PL
– Variables can potentially take on an infinite number of 

possible values from their domains
– Hence there are potentially an infinite number of ways to 

apply the Universal Elimination rule of inference 
• Godel's Completeness Theorem says that FOL 

entailment is only semidecidable
– If a sentence is true given a set of axioms, there is a 

procedure that will determine this
– If the sentence is false, then there is no guarantee that a 

procedure will ever determine this—i.e., it may never 
halt
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Generalized Modus Ponens (GMP)
• Apply modus ponens reasoning to generalized rules
• Combines And-Introduction, Universal-Elimination, and Modus Ponens 

– From P(c) and  Q(c) and (∀x)(P(x) ∧ Q(x)) → R(x) derive R(c)
• General case: Given

– atomic sentences P1, P2, ..., PN
– implication sentence (Q1 ∧ Q2 ∧ ... ∧ QN) → R

• Q1, ..., QN and R are atomic sentences 
– substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N
– Derive new sentence: subst(θ, R)  

• Substitutions
– subst(θ, α) denotes the result of applying a set of substitutions defined by θ

to the sentence α
– A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all occurrences 

of variable symbol vi by term ti
– Substitutions are made in left-to-right order in the list
– subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream) 
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Horn clauses
• A Horn clause is a sentence of the form:

(∀x) P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x) 
where 

– ≥ 0 Pis and 0 or 1 Q
– the Pis and Q are positive (i.e., non-negated) literals

• Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the 
Pi are all atomic and at most one of them is 
positive

• Prolog is based on Horn clauses
• Horn clauses represent a subset of the set of 

sentences representable  in FOL
10

Horn clauses II
• Special cases

– Typical rule: P1 ∧ P2 ∧ … Pn → Q
– Constraint: P1 ∧ P2 ∧ … Pn → false
– A fact: true → Q

• These are not Horn clauses:
–p(a) ∨ q(a)
–(P ∧ Q) → (R ∨ S)
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Forward chaining

• Proofs start with the given axioms/premises in 
KB, deriving new sentences using GMP until 
the goal/query sentence is derived

• This defines a forward-chaining inference 
procedure because it moves “forward” from the 
KB to the goal [eventually]

• Inference using GMP is sound and complete
for KBs containing only Horn clauses

12

Forward chaining algorithm
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Forward chaining example

• KB:  
– allergies(X) → sneeze(X)
– cat(Y) ∧ allergicToCats(X) → allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)
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Backward chaining
• Backward-chaining deduction using GMP is also 

complete for KBs containing only Horn clauses
• Proofs start with the goal query, find rules with that 

conclusion, and then prove each of the antecedents 
in the implication

• Keep going until you reach premises
• Avoid loops: check if new subgoal is already on 

the goal stack
• Avoid repeated work: check if new subgoal

– Has already been proved true
– Has already failed

15

Backward chaining algorithm
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Backward chaining example

• KB:  
– allergies(X) → sneeze(X)
– cat(Y) ∧ allergicToCats(X) → allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)



5

17

Forward vs. backward chaining

• FC is data- driven
– Automatic, unconscious processing
– E.g., object recognition, routine decisions
– May do lots of work that is irrelevant to the goal
– Efficient when you want to compute all conclusions

• BC is goal- driven, better for problem- solving
– Where are my keys?  How do I get to my next 

class?
– Complexity of BC can be much less than linear in 

the size of the KB
– Efficient when you want one or a few decisions
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Mixed strategy
• Many practical reasoning systems do both forward 

and backward chaining
• The way you encode a rule determines how it is 

used, as in
% this is a forward chaining rule
spouse(X,Y) => spouse(Y,X).
% this is a backward chaining rule
wife(X,Y) <= spouse(X,Y), female(X).

• Given a model of the rules you have and the kind 
of reason you need to do, it’s possible to decide 
which to encode as FC and which as BC rules.

19

Completeness of GMP
• GMP (using forward or backward chaining) is complete for 

KBs that contain only Horn clauses
• It is not complete for simple KBs that contain non-Horn 

clauses
• The following entail that S(A) is true:

1.(∀x) P(x) → Q(x)
2.(∀x) ¬P(x) → R(x)
3.(∀x) Q(x) → S(x)
4.(∀x) R(x) → S(x)

• If we want to conclude S(A), with GMP we cannot, since 
the second one is not a Horn clause

• It is equivalent to P(x) ∨ R(x)
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How about in Prolog?
• Let’s try encoding this in Prolog

1. q(X) :- p(X).
2. r(X) :- neg(p(X)).
3. s(X) :- q(X).
4. s(X) :- r(X).

– We should not use \+ or not (in SWI) for negation 
since it means “negation as failure”

– Prolog explores possible proofs independently
– It can’t ake a larger view and realize that one 

branch must be true, since p(x) ∨ ~p(x) is always true

1. (∀x) P(x) → Q(x)
2. (∀x) ¬P(x) → R(x)
3. (∀x) Q(x) → S(x)
4. (∀x) R(x) → S(x)
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Automating 
FOL Inference
with Resolution
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Resolution
• Resolution is a sound and complete inference 

procedure for FOL
• Reminder: Resolution rule for propositional logic:

– P1 ∨ P2 ∨ ... ∨ Pn
– ¬P1 ∨ Q2 ∨ ... ∨ Qm
– Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm

23

Resolution covers many cases
• Modes Ponens

– from P and P → Q derive Q
– from P and ¬ P ∨ Q  derive Q

• Chaining
– from P → Q and Q → R derive P → R 
– from (¬ P ∨ Q) and (¬ Q ∨ R)  derive ¬ P ∨ R

• Contradiction detection
– from P and ¬ P  derive false
– from P and ¬ P  derive the empty clause (=false)

24

Resolution in first-order logic
• Given sentences in conjunctive normal form:

– P1 ∨ ... ∨ Pn and   Q1 ∨ ... ∨ Qm

– Pi and Qi are literals, i.e., positive or negated predicate symbol with its 
terms

• if Pj and ¬Qk unify with substitution list θ, then derive the 
resolvent sentence:
subst(θ, P1 ∨... ∨ Pj-1 ∨ Pj+1 ... Pn ∨ Q1 ∨ …Qk-1 ∨ Qk+1 ∨... ∨ Qm)

• Example
– from clause P(x, f(a)) ∨ P(x, f(y)) ∨ Q(y) 

– and clause ¬P(z, f(a)) ∨ ¬Q(z)

– derive resolvent P(z, f(y)) ∨ Q(y) ∨ ¬Q(z)
– using θ = {x/z} 



7

25

A resolution proof tree
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Resolution refutation
• Given a consistent set of axioms KB and goal sentence Q, 

show that KB |= Q
• Proof by contradiction: Add ¬Q to KB and try to prove 

false.
i.e., (KB |- Q) ↔ (KB ∧ ¬Q |- False) 

• Resolution is refutation complete: it can establish that a 
given sentence Q is entailed by KB, but can’t (in general) be 
used to generate all logical consequences of a set of sentences

• Also, it cannot be used to prove that Q is not entailed by KB.
• Resolution won’t always give an answer since entailment is 

only semidecidable
– And you can’t just run two proofs in parallel, one trying to prove Q and 

the other trying to prove ¬Q, since KB might not entail either one
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Resolution example

• KB:  
– allergies(X) → sneeze(X)
– cat(Y) ∧ allergicToCats(X) → allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)
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Refutation resolution proof tree

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergicToCats(z) ∨ allergies(z)

¬cat(y) v sneeze(z) ∨ ¬allergicToCats(z) cat(felix)

sneeze(z) v ¬allergicToCats(z) allergicToCats(mary)

false

¬sneeze(mary)sneeze(mary)

w/z

y/felix

z/mary

negated query
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questions to be answered
• How to convert FOL sentences to conjunctive normal 

form (a.k.a. CNF, clause form): normalization and 
skolemization

• How to unify two argument lists, i.e., how to find their 
most general unifier (mgu) q: unification

• How to determine which two clauses in KB should be 
resolved next (among all resolvable pairs of clauses) : 
resolution (search) strategy

30

Converting 
to CNF

31

Converting sentences to CNF
1. Eliminate all ↔ connectives 

(P ↔ Q) ⇒ ((P → Q) ^ (Q → P)) 
2. Eliminate all → connectives 

(P → Q) ⇒ (¬P ∨ Q) 
3. Reduce the scope of each negation symbol to a single predicate 

¬¬P ⇒ P
¬(P ∨ Q) ⇒¬P ∧ ¬Q
¬(P ∧ Q) ⇒¬P ∨ ¬Q
¬(∀x)P ⇒ (∃x)¬P
¬(∃x)P ⇒ (∀x)¬P

4. Standardize variables: rename all variables so that each 
quantifier has its own unique variable name

32

Converting sentences to clausal form
Skolem constants and functions

5. Eliminate existential quantification by introducing Skolem 
constants/functions
(∃x)P(x) ⇒ P(C) 

C is a Skolem constant (a brand-new constant symbol that is not 
used in any other sentence)

(∀x)(∃y)P(x,y) ⇒ (∀x)P(x, f(x))
since ∃ is within the scope of a universally quantified variable, use a 
Skolem function f to construct a new value that depends on the 
universally quantified variable

f must be a brand-new function name not occurring in any other 
sentence in the KB. 

E.g., (∀x)(∃y)loves(x,y) ⇒ (∀x)loves(x,f(x)) 
In this case, f(x) specifies the person that x loves
a better name might be oneWhoIsLovedBy(x)
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Converting sentences to clausal form
6. Remove universal quantifiers by (1) moving them all to the 

left end; (2) making the scope of each the entire sentence; 
and (3) dropping the “prefix” part
Ex: (∀x)P(x) ⇒ P(x)

7. Put into conjunctive normal form (conjunction of 
disjunctions) using distributive and associative laws
(P ∧ Q) ∨ R ⇒ (P ∨ R) ∧ (Q ∨ R)
(P ∨ Q) ∨ R ⇒ (P ∨ Q ∨ R)

8. Split conjuncts into separate clauses
9. Standardize variables so each clause contains only variable 

names that do not occur in any other clause

34

An example
(∀x)(P(x) → ((∀y)(P(y) → P(f(x,y))) ∧ ¬(∀y)(Q(x,y) → P(y))))
2. Eliminate →

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧ ¬(∀y)(¬Q(x,y) ∨ P(y)))) 
3. Reduce scope of negation

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃y)(Q(x,y) ∧ ¬P(y)))) 
4. Standardize variables

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃z)(Q(x,z) ∧ ¬P(z)))) 
5. Eliminate existential quantification

(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x))))) 
6. Drop universal quantification symbols

(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x))))) 

35

Example
7. Convert to conjunction of disjunctions

(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧
(¬P(x) ∨ ¬P(g(x))) 

8. Create separate clauses
¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 
¬P(x) ∨ Q(x,g(x)) 
¬P(x) ∨ ¬P(g(x)) 

9. Standardize variables
¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 
¬P(z) ∨ Q(z,g(z)) 
¬P(w) ∨ ¬P(g(w))

36

Unification
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Unification
• Unification is a “pattern-matching” procedure 

– Takes two atomic sentences, called literals, as input
– Returns “Failure” if they do not match and a 

substitution list, θ, if they do
• That is, unify(p,q) = θ means subst(θ, p) = subst(θ, q) for 

two atomic sentences, p and q
• θ is called the most general unifier (mgu) 
• All variables in the given two literals are implicitly 

universally quantified 
• To make literals match, replace (universally quantified) 

variables by terms

38

Unification algorithm
procedure unify(p, q, θ)

Scan p and q left-to-right and find the first corresponding
terms where p and q “disagree” (i.e., p and q not equal)

If there is no disagreement, return θ (success!)
Let r and s be the terms in p and q, respectively,

where disagreement first occurs
If variable(r) then {

Let θ = union(θ, {r/s})
Return unify(subst(θ, p), subst(θ, q), θ)

} else if variable(s) then {
Let θ = union(θ, {s/r})
Return unify(subst(θ, p), subst(θ, q), θ)

} else return “Failure”
end

39

Unification: Remarks
• Unify is a linear-time algorithm that returns the most 

general unifier (mgu), i.e., the shortest-length substitution 
list that makes the two literals match. 

• In general, there is not a unique minimum-length 
substitution list, but unify returns one of minimum length

• A variable can never be replaced by a term containing that 
variable
Example: x/f(x) is illegal. 

• This “occurs check” should be done in the above pseudo-
code before making the recursive calls

40

Unification examples
• Example:

– parents(x, father(x), mother(Bill)) 
– parents(Bill, father(Bill), y)
– {x/Bill, y/mother(Bill)}

• Example:
– parents(x, father(x), mother(Bill))
– parents(Bill, father(y), z)
– {x/Bill, y/Bill, z/mother(Bill)}

• Example:
– parents(x, father(x), mother(Jane))
– parents(Bill, father(y), mother(y))
– Failure
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Resolution 
example

42

Practice example
Did Curiosity kill the cat

• Jack owns a dog. Every dog owner is an animal lover. No 
animal lover kills an animal. Either Jack or Curiosity killed 
the cat, who is named Tuna. Did Curiosity kill the cat?

• These can be represented as follows:
A. (∃x) Dog(x) ∧ Owns(Jack,x)
B. (∀x) ((∃y) Dog(y) ∧ Owns(x, y)) → AnimalLover(x)
C. (∀x) AnimalLover(x) → ((∀y) Animal(y) → ¬Kills(x,y))
D. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. (∀x) Cat(x) → Animal(x) 
G. Kills(Curiosity, Tuna)

GOAL

43

• Convert to clause form
A1. (Dog(D)) 
A2. (Owns(Jack,D))
B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))
C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. (¬Cat(z), Animal(z))

• Add the negation of query:
¬G: ¬Kills(Curiosity, Tuna)

D is a skolem constant

44

R1: ¬G, D, {} (Kills(Jack, Tuna))
R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack), 

~Animal(Tuna))
R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y), 

~Animal(Tuna))
R4: R3, A1, {y/D} (~Owns(Jack, D), 

~Animal(Tuna))
R5: R4, A2, {} (~Animal(Tuna))
R6: R5, F, {z/Tuna} (~Cat(Tuna))
R7: R6, E, {} FALSE

The resolution refutation proof
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• The proof tree

¬G D

C

B

A1

A2

F

A

R1: K(J,T)

R2: ¬AL(J) ∨ ¬A(T)

R3: ¬D(y) ∨ ¬O(J,y) ∨ ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}

46

Resolution 
search 

strategies

47

Resolution TP as search
• Resolution can be thought of as the bottom-up 

construction of a search tree, where the leaves are the 
clauses produced by KB and the negation of the goal

• When a pair of clauses generates a new resolvent 
clause, add a new node to the tree with arcs directed 
from the resolvent to the two parent clauses

• Resolution succeeds when a node containing the False
clause is produced, becoming the root node of the tree

• A strategy is complete if its use guarantees that the 
empty clause (i.e., false) can be derived whenever it is 
entailed

48

Strategies
• There are a number of general (domain-independent) 

strategies that are useful in controlling a resolution theorem 
prover

• We’ll briefly look at the following:
– Breadth-first
– Length heuristics
– Set of support
– Input resolution
– Subsumption
– Ordered resolution
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ExampleExample

1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire negated goal

50

Breadth-first search

• Level 0 clauses are the original axioms and the negation of 
the goal

• Level k clauses are the resolvents computed from two 
clauses, one of which must be from level k-1 and the other 
from any earlier level

• Compute all possible level 1 clauses, then all possible level 
2 clauses, etc. 

• Complete, but very inefficient

51

BFS exampleBFS example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Battery-OK ∨ ¬Bulbs-OK
11. ¬Bulbs-OK ∨ Headlights-Work
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
15. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
16. … [and we’re still only at Level 1!]

1,4
1,5
2,3
2,5
2,6
2,7

52

Length heuristics

• Shortest-clause heuristic: 
Generate a clause with the fewest literals first

• Unit resolution: 
Prefer resolution steps in which at least one parent 
clause is a “unit clause,” i.e., a clause containing a 
single literal
– Not complete in general, but complete for Horn clause 

KBs 
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Unit resolution exampleUnit resolution example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Bulbs-OK ∨ Headlights-Work
11. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
12. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
13. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
14. ¬Engine-Starts ∨ Flat-Tire
15. ¬Engine-Starts ¬ Car-OK
16. … [this doesn’t seem to be headed anywhere either!]

1,5
2,5
2,6
2,7
3,8
3,9

54

Set of support

• At least one parent clause must be the negation of 
the goal or a “descendant” of such a goal clause 
(i.e., derived from a goal clause)

• (When there’s a choice, take the most recent 
descendant)

• Complete (assuming all possible set-of-support 
clauses are derived) 

• Gives a goal-directed character to the search

55

Set of support exampleSet of support example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
12. ¬Engine-Starts
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK
15. ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK
16. … [a bit more focused, but we still seem to be wandering]

9,3
10,2
10,8
11,5
11,6
11,7

56

Unit resolution + set of support exampleUnit resolution + set of support example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Engine-Starts
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank
13. ¬Starter-OK ∨ Empty-Gas-Tank
14. Empty-Gas-Tank
15. FALSE
[Hooray! Now that’s more like it!]

9,3
10,8
12,2
12,5
13,6
14,7
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Simplification heuristics

• Subsumption:
Eliminate all sentences that are subsumed by (more 
specific than) an existing sentence to keep the KB small
– If P(x) is already in the KB, adding P(A) makes no sense – P(x) is 

a superset of P(A)
– Likewise adding P(A) ∨ Q(B) would add nothing to the KB

• Tautology: 
Remove any clause containing two complementary literals 
(tautology)

• Pure symbol:
If a symbol always appears with the same “sign,” remove 
all the clauses that contain it

58

Example (Pure Symbol)Example (Pure Symbol)
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire

59

Input resolution

• At least one parent must be one of the input sentences (i.e., 
either a sentence in the original KB or the negation of the 
goal) 

• Not complete in general, but complete for Horn clause KBs
• Linear resolution

– Extension of input resolution
– One of the parent sentences must be an input sentence or an ancestor 

of the other sentence
– Complete
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Ordered resolution

• Search for resolvable sentences in order (left to 
right)

• This is how Prolog operates
• Resolve the first element in the sentence first
• This forces the user to define what is important in 

generating the “code”
• The way the sentences are written controls the 

resolution
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Prolog
• A logic programming language based on Horn clauses

– Resolution refutation
– Control strategy: goal-directed and depth-first

• always start from the goal clause
• always use the new resolvent as one of the parent clauses for resolution
• backtracking when the current thread fails
• complete for Horn clause KB

– Support answer extraction (can request single or all answers)
– Orders the clauses and literals within a clause to resolve non-determinism

• Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)
• A (sub)goal clause may contain more than one literals, i.e., <= P1(a), 

P2(a)
– Use “closed world” assumption (negation as failure)

• If it fails to derive P(a), then assume ~P(a)
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Summary
• Logical agents apply inference to a knowledge base to 

derive new information and make decisions
• Basic concepts of logic:

– Syntax: formal structure of sentences
– Semantics: truth of sentences wrt models
– Entailment: necessary truth of one sentence given 

another
– Inference: deriving sentences from other sentences
– Soundness: derivations produce only entailed sentences
– Completeness: derivations can produce all entailed 

sentences
• FC and BC are linear time, complete for Horn clauses
• Resolution is a sound and complete inference method for 

propositional and first-order logic


