Logical Inference

Chapter 9

Some material adopted from notes
by Andreas Geyer-Schulz,
Chuck Dyer, and mary Getoo

Overview

- Model checking
- Inference in first ader logic
- Inference rules and generalized modes ponens
-Forward chaining
-Backward chaining
-Resolution
- Clausal form
- Unification
- Resolution as search

Model checking

- Given KB, does sentence S hold?
- Basically generate and test:
-Generate all the possible models
-Consider the models M in which KB is TRUE
-If $\forall \mathrm{M} \mathrm{S}$, then S is provably true
-If $\forall \mathrm{M} \neg \mathrm{S}$, then S is provably false
-Otherwise ($\exists \mathrm{M} 1 \mathrm{~S} \wedge \exists \mathrm{M} 2 \neg \mathrm{~S}$): S is satisfiable but neither provably true or provably false

Efficient model checking

- Davis-Putnam algorithm (DPLL) is a Generate-and-test model checking with:
- Early termination (short-circuiting of disjunction and conjunction)
- Pure symbol heuristic: Any symbol that only appears negated or unnegated must be FALSE/TRUE respectively. (Can
"conditionalize" based on instantiations already produced)
- Unit clause heuristic: Any symbol that appears in a clause by itself can immediately be set to TRUE or FALSE
- WALKSAT: Local search for satisfiability: Pick a symbol to flip (toggle TRUE/FALSE), either using min-conflicts or choosing randomly
- ...or you can use any local or global search algorithm!

Reminder: Inference rules for FOL

- Inference rules for propositional logic apply to FOL as well
- Modus Ponens, And-Introduction, And-Elimination, ...
- New (sound) inference rules for use with quantifiers:
-Universal elimination
-Existential introduction
-Existential elimination
-Generalized Modus Ponens (GMP)

Automating FOL inference with Generalized Modus Ponens

Generalized Modus Ponens (GMP)

- Apply modus ponens reasoning to generalized rules
- Combines And-Introduction, Universal-Elimination, and Modus Ponens - From $P(c)$ and $Q(c)$ and $(\forall x)(P(x) \wedge Q(x)) \rightarrow R(x)$ derive $R(c)$
- General case: Given
- atomic sentences $P_{1}, P_{2}, \ldots, P_{N}$
- implication sentence $\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{N}\right) \rightarrow R$
- $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{N}}$ and R are atomic sentences
substitution $\operatorname{subst}\left(\theta, P_{i}\right)=\operatorname{subst}\left(\theta, \mathrm{Q}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$
Derive new sentence: $\operatorname{subst}(\theta, R)$
- Substitutions
$-\operatorname{subst}(\theta, \alpha)$ denotes the result of applying a set of substitutions defined by θ to the sentence α
- A substitution list $\theta=\left\{\mathrm{v}_{1} / \mathrm{t}_{1}, \mathrm{v}_{2} / \mathrm{t}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$ means to replace all occurrences of variable symbol v_{i} by term t_{i}
- Substitutions are made in left-to-right order in the list
$-\operatorname{subst}(\{\mathrm{x} /$ IceCream, $\mathrm{y} /$ Ziggy $\}$, eats $(\mathrm{y}, \mathrm{x}))=$ eats(Ziggy, IceCream)

Horn clauses

- A Horn clause is a sentence of the form: $(\forall \mathrm{x}) \mathrm{P}_{1}(\mathrm{x}) \wedge \mathrm{P}_{2}(\mathrm{x}) \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})$
where
$-\geq 0 \mathrm{P}_{\mathrm{S}}$ and 0 or 1 Q
- the P_{i} and Q are positive (i.e., non-negated) literals
- Equivalently: $P_{I}(x) \vee P_{2}(x) \ldots \vee P_{n}(x)$ where the P_{i} are all atomic and at most one of them is positive
- Prolog is based on Horn clauses
- Horn clauses represent a subset of the set of sentences representable in FOL

Horn clauses II

- Special cases
-Typical rule: $\mathrm{P}_{1} \wedge \mathrm{P}_{2} \wedge \ldots \mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}$
- Constraint: $\mathrm{P}_{1} \wedge \mathrm{P}_{2} \wedge \ldots \mathrm{P}_{\mathrm{n}} \rightarrow$ false
$-A$ fact: true $\rightarrow \mathrm{Q}$
- These are not Horn clauses:
$-p(a) \vee q(a)$
$-(P \wedge Q) \rightarrow(R \vee S)$

Forward chaining

- Proofs start with the given axioms/premises in KB, deriving new sentences using GMP until the goal/query sentence is derived
- This defines a forward-chaining inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is sound and complete for KBs containing only Horn clauses

Forward chaining algorithm

 AddP䅠KF

 end

if premberes $=\| \mid$ then

s.nd

Forward chaining example

- KB:
$-\operatorname{allergies}(\mathrm{X}) \rightarrow$ sneeze (X)
$-\operatorname{cat}(\mathrm{Y}) \wedge$ allergicToCats $(\mathrm{X}) \rightarrow$ allergies (X)
$-\operatorname{cat}(f e l i x)$
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Backward chaining

- Backward-chaining deduction using GMP is also complete for KBs containing only Horn clauses
- Proofs start with the goal query, find rules with that conclusion, and then prove each of the antecedents in the implication
- Keep going until you reach premises
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
- Has already been proved true
- Has already failed

Backward chaining example

- KB:


```
    inputw KE-T kroulntes Firc
```


$q^{6}=$ Firstalifs

end

rnd

$-\operatorname{allergies}(\mathrm{X}) \rightarrow$ sneeze (X)
$-\operatorname{cat}(\mathrm{Y}) \wedge$ allergicToCats $(\mathrm{X}) \rightarrow \operatorname{allergies}(\mathrm{X})$

- cat(felix)
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Forward vs. backward chaining

- FC is data diven
-Automatic, unconscious processing
-E.g., object recognition, routine decisions
-May do lots of work that is irrelevant to the goal
-Efficient when you want to compute all conclusions
- BC is goat driven, better for problem solving
- Where are my keys? How do I get to my next class?
-Complexity of BC can be much less than linear in the size of the KB
-Efficient when you want one or a few decisions

Mixed strategy

- Many practical reasoning systems do both forward and backward chaining
- The way you encode a rule determines how it is used, as in
$\%$ this is a forward chaining rule spouse $(X, Y)=>\operatorname{spouse}(Y, X)$.
$\%$ this is a backward chaining rule wife $(X, Y)<=\operatorname{spouse}(X, Y)$, female(X).
- Given a model of the rules you have and the kind of reason you need to do, it's possible to decide which to encode as FC and which as BC rules.

Completeness of GMP

- GMP (using forward or backward chaining) is complete for KBs that contain only Horn clauses
- It is not complete for simple KBs that contain non-Horn clauses
- The following entail that $S(A)$ is true:

$$
\begin{aligned}
& \text { 1. }(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}) \\
& \text { 2. }(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{R}(\mathrm{x}) \\
& \text { 3. }(\forall \mathrm{x}) \mathrm{Q}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x}) \\
& \text { 4. }(\forall \mathrm{x}) \mathrm{R}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x})
\end{aligned}
$$

- If we want to conclude $S(A)$, with GMP we cannot, since the second one is not a Horn clause

How about in Prolog?

- Let's try encoding this in Prolog

1. $\mathrm{q}(\mathrm{X}):-\mathrm{p}(\mathrm{X})$.	1.	$(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})$
2. $\mathrm{r}(\mathrm{X}):-\operatorname{neg}(\mathrm{p}(\mathrm{X}))$.	2.	$(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{R}(\mathrm{x})$
3. $\mathrm{s}(\mathrm{X}):-\mathrm{q}(\mathrm{X})$.	3.	$(\forall \mathrm{x}) \mathrm{Q}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x})$
4. $\mathrm{s}(\mathrm{X}):-\mathrm{r}(\mathrm{X})$.	4.	$(\forall \mathrm{x}) \mathrm{R}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x})$

- We should not use $\backslash+$ or not (in SWI) for negation since it means "negation as failure"
- Prolog explores possible proofs independently
- It can't ake a larger view and realize that one branch must be true, since $\mathbf{p}(\mathbf{x}) \vee \sim \mathbf{p}(\mathbf{x})$ is always true
- It is equivalent to $\mathrm{P}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x})$

Automating FOL Inference with Resolution

Resolution

- Resolution is a sound and complete inference procedure for FOL
- Reminder: Resolution rule for propositional logic:
$-P_{1} \vee P_{2} \vee \ldots \vee P_{n}$
$-\neg \mathrm{P}_{1} \vee \mathrm{Q}_{2} \vee \ldots \vee \mathrm{Q}_{\mathrm{m}}$
- Resolvent: $P_{2} \vee \ldots \vee P_{n} \vee Q_{2} \vee \ldots \vee Q_{m}$

Resolution covers many cases

- Modes Ponens
- from P and $\mathrm{P} \rightarrow \mathrm{Q}$ derive Q
- from P and $\neg \mathrm{P} \vee \mathrm{Q}$ derive Q
- Chaining
- from $\mathrm{P} \rightarrow \mathrm{Q}$ and $\mathrm{Q} \rightarrow \mathrm{R}$ derive $\mathrm{P} \rightarrow \mathrm{R}$
- from $(\neg \mathrm{P} \vee \mathrm{Q})$ and $(\neg \mathrm{Q} \vee \mathrm{R})$ derive $\neg \mathrm{P} \vee \mathrm{R}$
- Contradiction detection
- from P and $\neg P$ derive false
- from P and $\neg \mathrm{P}$ derive the empty clause (=false)

Resolution in first-order logic

- Given sentences in conjunctive normal form:
$-P_{1} \vee \ldots \vee P_{n}$ and $Q_{1} \vee \ldots \vee Q_{m}$
$-P_{i}$ and Q_{i} are literals, i.e., positive or negated predicate symbol with its terms
- if P_{j} and $\neg Q_{k}$ unify with substitution list θ, then derive the resolvent sentence:
$\operatorname{subst}\left(\theta, P_{1} \vee \ldots \vee P_{j-1} \vee P_{j+1} \ldots P_{n} \vee Q_{1} \vee \ldots Q_{k-1} \vee Q_{k+1} \vee \ldots \vee Q_{m}\right)$
- Example
- from clause $\quad \mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{a})) \vee \mathbf{P}(\mathbf{x}, \mathbf{f}(\mathbf{y})) \vee \mathbf{Q}(\mathbf{y})$
- and clause $\quad \neg \mathbf{P}(\mathbf{z}, \mathbf{f}(\mathbf{a})) \vee \neg \mathbf{Q}(\mathbf{z})$
- derive resolvent $\mathbf{P}(\mathbf{z}, \mathbf{f}(\mathbf{y})) \vee \mathbf{Q}(\mathbf{y}) \vee \neg \mathbf{Q}(\mathbf{z})$
- using $\quad \boldsymbol{\theta}=\{\mathbf{x} / \mathbf{z}\}$

Resolution refutation

- Given a consistent set of axioms KB and goal sentence Q , show that $\mathrm{KB} \mid=\mathrm{Q}$
- Proof by contradiction: Add $\neg \mathrm{Q}$ to KB and try to prove false.
i.e., $(\mathrm{KB} \mid-\mathrm{Q}) \leftrightarrow(\mathrm{KB} \wedge \neg \mathrm{Q} \mid$ - False $)$
- Resolution is refutation complete: it can establish that a given sentence Q is entailed by KB , but can't (in general) be used to generate all logical consequences of a set of sentences
- Also, it cannot be used to prove that Q is not entailed by KB
- Resolution won't always give an answer since entailment is only semidecidable
- And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove $\neg \mathrm{Q}$, since KB might not entail either one

Resolution example

- KB:
$-\operatorname{allergies}(\mathrm{X}) \rightarrow$ sneeze (X)
$-\operatorname{cat}(\mathrm{Y}) \wedge$ allergicToCats $(\mathrm{X}) \rightarrow$ allergies (X)
- cat(felix)
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Refutation resolution proof tree

questions to be answered

- How to convert FOL sentences to conjunctive normal form (a.k.a. CNF, clause form): normalization and skolemization
- How to unify two argument lists, i.e., how to find their most general unifier (mgu) q: unification
- How to determine which two clauses in KB should be resolved next (among all resolvable pairs of clauses) : resolution (search) strategy

Converting to CNF

Converting sentences to CNF

1. Eliminate all \leftrightarrow connectives
$(\mathrm{P} \leftrightarrow \mathrm{Q}) \Rightarrow\left((\mathrm{P} \rightarrow \mathrm{Q})^{\wedge}(\mathrm{Q} \rightarrow \mathrm{P})\right)$
2. Eliminate all \rightarrow connectives

$$
(\mathrm{P} \rightarrow \mathrm{Q}) \Rightarrow(\neg \mathrm{P} \vee \mathrm{Q})
$$

3. Reduce the scope of each negation symbol to a single predicate

$$
\begin{aligned}
& \neg \neg \mathrm{P} \Rightarrow \mathrm{P} \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \Rightarrow \neg \mathrm{P} \wedge \neg \mathrm{Q} \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \Rightarrow \neg \mathrm{P} \vee \neg \mathrm{Q} \\
& \neg(\forall \mathrm{x}) \mathrm{P} \Rightarrow(\exists \mathrm{x}) \neg \mathrm{P} \\
& \neg(\exists \mathrm{x}) \mathrm{P} \Rightarrow(\forall \mathrm{x}) \neg \mathrm{P}
\end{aligned}
$$

4. Standardize variables: rename all variables so that each quantifier has its own unique variable name

Converting sentences to clausal form

 Skolem constants and functions5. Eliminate existential quantification by introducing Skolem constants/functions
$(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{C})$
C is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)
$(\forall \mathrm{x})(\exists \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y}) \Rightarrow(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$
since \exists is within the scope of a universally quantified variable, use a Skolem function f to construct a new value that depends on the universally quantified variable
f must be a brand-new function name not occurring in any other sentence in the KB.
E.g., $(\forall \mathrm{x})(\exists \mathrm{y}) \operatorname{loves}(\mathrm{x}, \mathrm{y}) \Rightarrow(\forall \mathrm{x}) \operatorname{loves}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$

In this case, $\mathrm{f}(\mathrm{x})$ specifies the person that x loves
a better name might be oneWhoIsLovedBy(x)

Converting sentences to clausal form

6. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part
Ex: $(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{x})$
7. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws
$(\mathrm{P} \wedge \mathrm{Q}) \vee \mathrm{R} \Rightarrow(\mathrm{P} \vee \mathrm{R}) \wedge(\mathrm{Q} \vee \mathrm{R})$
$(P \vee Q) \vee R \Rightarrow(P \vee Q \vee R)$
8. Split conjuncts into separate clauses
9. Standardize variables so each clause contains only variable names that do not occur in any other clause

An example

$(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow((\forall \mathbf{y})(\mathbf{P}(\mathbf{y}) \rightarrow \mathbf{P}(\mathbf{f}(\mathbf{x}, \mathbf{y}))) \wedge \neg(\forall \mathbf{y})(\mathbf{Q}(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{P}(\mathbf{y}))))$
2. Eliminate \rightarrow
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge \neg(\forall \mathrm{y})(\neg \mathrm{Q}(\mathrm{x}, \mathrm{y}) \vee \mathrm{P}(\mathrm{y}))))$
3. Reduce scope of negation
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\exists \mathrm{y})(\mathrm{Q}(\mathrm{x}, \mathrm{y}) \wedge \neg \mathrm{P}(\mathrm{y}))))$
4. Standardize variables
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\exists \mathrm{z})(\mathrm{Q}(\mathrm{x}, \mathrm{z}) \wedge \neg \mathrm{P}(\mathrm{z}))))$
5. Eliminate existential quantification
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{g}(\mathrm{x})))))$
6. Drop universal quantification symbols
$(\neg \mathrm{P}(\mathrm{x}) \vee((\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{g}(\mathrm{x})))))$

Example

7. Convert to conjunction of disjunctions
$(\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\neg \mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x}))) \wedge$

$$
(\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{~g}(\mathrm{x})))
$$

8. Create separate clauses
$\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))$

Unification

$\neg \mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x}))$

$$
\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{~g}(\mathrm{x}))
$$

9. Standardize variables
$\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))$
$\neg \mathrm{P}(\mathrm{z}) \vee \mathrm{Q}(\mathrm{z}, \mathrm{g}(\mathrm{z}))$
$\neg \mathrm{P}(\mathrm{w}) \vee \neg \mathrm{P}(\mathrm{g}(\mathrm{w}))$

Unification

- Unification is a "pattern-matching" procedure - Takes two atomic sentences, called literals, as input
- Returns "Failure" if they do not match and a substitution list, θ, if they do
- That is, $\operatorname{unify}(p, q)=\theta$ means $\operatorname{subst}(\theta, p)=\operatorname{subst}(\theta, q)$ for two atomic sentences, p and q
- $\boldsymbol{\theta}$ is called the most general unifier (mgu)
- All variables in the given two literals are implicitly universally quantified
- To make literals match, replace (universally quantified) variables by terms

Unification algorithm

procedure unify $(\mathrm{p}, \mathrm{q}, \theta)$

Scan p and q left-to-right and find the first corresponding terms where p and q "disagree" (i.e., p and q not equal) If there is no disagreement, return θ (success!)
Let r and s be the terms in p and q , respectively,
where disagreement first occurs
If variable(r) then \{
Let $\theta=\operatorname{union}(\theta,\{r / s\})$
Return unify $(\operatorname{subst}(\theta, p), \operatorname{subst}(\theta, q), \theta)$
$\}$ else if variable(s) then $\{$
Let $\theta=\operatorname{union}(\theta,\{\mathrm{s} / \mathrm{r}\})$
$\operatorname{Return} \operatorname{unify}(\operatorname{subst}(\theta, p), \operatorname{subst}(\theta, q), \theta)$
\} else return "Failure"
end

Unification: Remarks

- Unify is a linear-time algorithm that returns the most general unifier (mgu), i.e., the shortest-length substitution list that makes the two literals match.
- In general, there is not a unique minimum-length substitution list, but unify returns one of minimum length
- A variable can never be replaced by a term containing that variable
Example: $\mathrm{xf}(\mathrm{f})$ is illegal.
- This "occurs check" should be done in the above pseudocode before making the recursive calls

Unification examples

- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(Bill), y)
- \{x/Bill, y/mother(Bill) $\}$
- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(y), z)
- \{x/Bill, y/Bill, z/mother(Bill)\}
- Example:
- parents(x, father(x), mother(Jane))
- parents(Bill, father(y), mother(y))
- Failure

Resolution example

Practice example Did Curiosity kill the cat

- Jack owns a dog. Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?
- These can be represented as follows:
A. $(\exists x) \operatorname{Dog}(x) \wedge$ Owns(Jack,x)
B. $(\forall \mathrm{x})((\exists \mathrm{y}) \operatorname{Dog}(\mathrm{y}) \wedge \operatorname{Owns}(\mathrm{x}, \mathrm{y})) \rightarrow$ AnimalLover (x)
C. $(\forall \mathrm{x})$ AnimalLover $(\mathrm{x}) \rightarrow((\forall \mathrm{y})$ Animal $(\mathrm{y}) \rightarrow \neg \operatorname{Kills}(\mathrm{x}, \mathrm{y}))$
D. Kills(Jack,Tuna) \vee Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. $(\forall \mathrm{x}) \operatorname{Cat}(\mathrm{x}) \rightarrow \operatorname{Animal}(\mathrm{x})$ GOAL
G. Kills(Curiosity, Tuna)

The resolution refutation proof

- Convert to clause form

A1. ($\operatorname{Dog}(\mathrm{D})$) \qquad D is a skolem constant

A2. (Owns(Jack,D))
B. ($\neg \operatorname{Dog}(\mathrm{y}), \neg \mathrm{Owns}(\mathrm{x}, \mathrm{y})$, AnimalLover(x$))$
C. (\neg AnimalLover(a), \neg Animal(b), \neg Kills $(\mathrm{a}, \mathrm{b}))$
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. $(\neg \operatorname{Cat}(\mathrm{z}), \operatorname{Animal}(\mathrm{z}))$

- Add the negation of query:
\neg G: \neg Kills(Curiosity, Tuna)

$\mathrm{R} 1: \neg \mathrm{G}, \mathrm{D},\{ \}$	(Kills(Jack, Tuna))
R2: R1, C, \{a/Jack, b/Tuna \}	(~AnimalLover(Jack), ~Animal(Tuna))
R3: R2, B, \{x/Jack $\}$	($\sim \operatorname{Dog}(\mathrm{y}), \sim$ Owns(Jack, y), \sim Animal(Tuna))
R4: R3, A1, $\{\mathrm{y} / \mathrm{D}\}$	(\sim Owns(Jack, D), ~Animal(Tuna))
R5: R4, A2, \{\}	(\sim Animal(Tuna))
R6: R5, F, \{z/Tuna \}	(\sim Cat(Tuna))
R7: R6, E, \{\}	FALSE

- The proof tree

R1: K(J,T) $\{\mathrm{a} / \mathrm{J}, \mathrm{b} / \mathrm{T}\}\}^{\mathrm{C}}$
R2: $\neg \mathrm{AL}(\mathrm{J}) \vee \neg \mathrm{A}(\mathrm{T})$
$\mathrm{R} 3: \neg \mathrm{D}(\mathrm{y}) \vee \neg \mathrm{O}(\mathrm{J}, \mathrm{y}) \vee \neg \mathrm{A}(\mathrm{T})$
\y/D\}
R4: $\neg \mathrm{O}(\mathrm{J}, \mathrm{D}), \neg \mathrm{A}(\mathrm{T})$

Resolution TP as search

- Resolution can be thought of as the bottom-up construction of a search tree, where the leaves are the clauses produced by KB and the negation of the goal
- When a pair of clauses generates a new resolvent clause, add a new node to the tree with arcs directed from the resolvent to the two parent clauses
- Resolution succeeds when a node containing the False clause is produced, becoming the root node of the tree
- A strategy is complete if its use guarantees that the empty clause (i.e., false) can be derived whenever it is entailed

Resolution search strategies

Strategies

- There are a number of general (domain-independent) strategies that are useful in controlling a resolution theorem prover
- We'll briefly look at the following:
- Breadth-first
- Length heuristics
- Set of support
- Input resolution
- Subsumption
- Ordered resolution

Example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK \vee Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
3. \neg Engine-Starts \vee Flat-Tire \vee Car-OK
4. Headlights-Work

Battery-OK
6. Starter-OK
7. \neg Empty-Gas-Tank
8. $\neg \mathrm{Car-OK}$
9. \neg Flat-Tire $<$ negated goal

Breadth-first search

- Level 0 clauses are the original axioms and the negation of the goal
- Level k clauses are the resolvents computed from two clauses, one of which must be from level $\mathrm{k}-1$ and the other from any earlier level
- Compute all possible level 1 clauses, then all possible level 2 clauses, etc.
- Complete, but very inefficient

BFS example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK \vee Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
3. \neg Engine-Starts \vee Flat-Tire \vee Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. $\neg E m p t y-G a s-T a n k$
8. \neg Car-OK
9. \neg Battery-OK $\vee \neg$ Bulbs-OK
10. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Flat-Tire \vee Car-OK
11. \neg Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
12. \neg Battery-OK \vee Empty-Gas-Tank \vee Engine-Starts
13. \neg Battery-OK \neg Starter-OK \vee Engine-Starts
14. ... [and we're still only at Level 1!]

- Shortest-clause heuristic:

Generate a clause with the fewest literals first

- Unit resolution:

Prefer resolution steps in which at least one parent clause is a "unit clause," i.e., a clause containing a single literal

Length heuristics

- Not complete in general, but complete for Horn clause KBs

Unit resolution example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK \vee Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
3. \neg Engine-Starts \vee Flat-Tire \vee Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. \neg Empty-Gas-Tank
8. ᄀCar-OK
9. \neg Flat-Tire
10. \neg Bulbs-OK \vee Headlights-Work
11. \neg Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
12. \neg Battery-OK \vee Empty-Gas-Tank \vee Engine-Starts
13. \neg Battery-OK \neg Starter-OK \vee Engine-Starts
14. \neg Engine-Starts \vee Flat-Tire
15. \neg Engine-Starts \neg Car-OK
16. ... [this doesn't seem to be headed anywhere either!]

Set of support

- At least one parent clause must be the negation of the goal or a "descendant" of such a goal clause (i.e., derived from a goal clause)
- (When there's a choice, take the most recent descendant)
- Complete (assuming all possible set-of-support clauses are derived)
- Gives a goal-directed character to the search

Set of support example

Unit resolution + set of support example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK \vee Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
3. \neg Engine-Starts \vee Flat-Tire \vee Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. $\neg E m p t y-G a s-T a n k$
8. \neg Car-OK
9. \neg Flat-Tire

9,3
Engine-Starts \vee Car-OK
10,2
10,8 12. ᄀEngine-Starts
1,5 13. \neg Starter-OK \vee Empty-Gas-Tank \vee Car-OK
11,6 14. \neg Battery-OK \vee Empty-Gas-Tank \vee Car-OK
11,7 15. \neg Battery-OK $\vee \neg$ Starter-OK \vee Car-OK
16. ... [a bit more focused, but we still seem to be wandering]
\neg Battery-OK $\vee \neg$ Bulbs-OK \vee Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
3. \neg Engine-Starts \vee Flat-Tire \vee Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. \neg Empty-Gas-Tank
8. \neg Car-OK
9. \neg Flat-Tire

9,3 10. \neg Engine-Starts \vee Car-OK
10,8 11. \neg Engine-Starts
12,2 12. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank
12,5 13. \neg Starter-OK \vee Empty-Gas-Tank
13,6 14. Empty-Gas-Tank
14,7 15. FALSE
[Hooray! Now that's more like it!]

Simplification heuristics

- Subsumption:

Eliminate all sentences that are subsumed by (more specific than) an existing sentence to keep the KB small

- If $\mathrm{P}(\mathrm{x})$ is already in the KB , adding $\mathrm{P}(\mathrm{A})$ makes no sense $-\mathrm{P}(\mathrm{x})$ is a superset of $\mathrm{P}(\mathrm{A})$
- Likewise adding $\mathrm{P}(\mathrm{A}) \vee \mathrm{Q}(\mathrm{B})$ would add nothing to the KB
- Tautology:

Remove any clause containing two complementary literals (tautology)

- Pure symbol:

If a symbol always appears with the same "sign," remove all the clauses that contain it

Example (Pure Symbol)

Battery-OK \vee-Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
\neg Battery-OK $\vee \neg$ Starter-OK \vee Empty
\neg Engine-Starts v

Beattery-OK
Starter-OK
. \neg Empty-Gas-Tank
8. \neg Car-OK
9. \neg Flat-Tire

Input resolution

- At least one parent must be one of the input sentences (i.e., either a sentence in the original KB or the negation of the goal)
- Not complete in general, but complete for Horn clause KBs right)
- Linear resolution
- Extension of input resolution
- One of the parent sentences must be an input sentence or an ancestor of the other sentence
- Complete

Ordered resolution

- Search for resolvable sentences in order (left to
- This is how Prolog operates
- Resolve the first element in the sentence first
- This forces the user to define what is important in generating the "code"
- The way the sentences are written controls the resolution

Prolog

- A logic programming language based on Horn clauses
- Resolution refutation
- Control strategy: goal-directed and depth-first
- always start from the goal clause
- always use the new resolvent as one of the parent clauses for resolution
- backtracking when the current thread fails
- complete for Horn clause KB
- Support answer extraction (can request single or all answers)
- Orders the clauses and literals within a clause to resolve non-determinism
- $\mathrm{Q}(\mathrm{a})$ may match both $\mathrm{Q}(\mathrm{x})<=\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{y})<=\mathrm{R}(\mathrm{y})$
- A (sub)goal clause may contain more than one literals, i.e., $<=$ P1 (a), P2(a)
- Use "closed world" assumption (negation as failure)
- If it fails to derive $P(a)$, then assume $\sim P(a)$

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- Syntax: formal structure of sentences
- Semantics: truth of sentences wrt models
- Entailment: necessary truth of one sentence given another
- Inference: deriving sentences from other sentences
- Soundness: derivations produce only entailed sentences
- Completeness: derivations can produce all entailed sentences
- FC and BC are linear time, complete for Horn clauses
- Resolution is a sound and complete inference method for propositional and first-order logic

