
1

Game PlayingGame Playing
Chapter 6

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Why study games?
• Interesting, hard problems which require minimal

“initial structure”
• Clear criteria for success
• Offer an opportunity to study problems involving

{hostile, adversarial, competing} agents and the
uncertainty of interacting with the natural world

• Historical reasons: For centuries humans have used
them to exert their intelligence

• Fun, good, easy to understand PR potential
• Games often define very large search spaces

– chess 35100 nodes in search tree, 1040 legal states

State of the art
• How good are computer game players?

– Chess:
• Deep Blue beat Gary Kasparov in 1997
• Garry Kasparav vs. Deep Junior (Feb 2003): tie!
• Kasparov vs. X3D Fritz (November 2003): tie!

http://www.cnn.com/2003/TECH/fun.games/11/19/kasparov.ches
s.ap/

– Checkers: Chinook (an AI program with a very large endgame
database) is (?) the world champion.

– Go: Computer players are decent, at best
– Bridge: “Expert-level” computer players exist (but no world

champions yet!)
– Poker: See the 2006 AAAI Computer Poker Competition

• Good places to learn more:
– http://www.cs.ualberta.ca/~games/
– http://www.cs.unimass.nl/icga

Chinook
• Chinook is the World Man-Machine Checkers

Champion, developed by researchers at the University
of Alberta.

• It earned this title by competing in human
tournaments, winning the right to play for the
(human) world championship, and eventually
defeating the best players in the world.

• Visit http://www.cs.ualberta.ca/~chinook/ to play a
version of Chinook over the Internet.

• The developers claim to have fully analyzed the game
of checkers, and can provably always win if they play
black

• “One Jump Ahead: Challenging Human Supremacy in
Checkers” Jonathan Schaeffer, University of Alberta
(496 pages, Springer. $34.95, 1998).

2

Ratings of human and computer chess champions

Othello: Murakami vs. Logistello

Takeshi Murakami
World Othello Champion

1997: The Logistello software crushed Murakami
by 6 games to 0

open sourced

Go: Goemate vs. a young player

Name: Chen Zhixing
Profession: Retired
Computer skills:

self-taught programmer
Author of Goemate (arguably the

best Go program available today)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

3

Go: Goemate vs. ??
Name: Chen Zhixing
Profession: Retired
Computer skills:

self-taught programmer
Author of Goemate (arguably the

strongest Go programs)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

Go has too high a branching factor
for existing search techniques
Current and future software must
rely on huge databases and pattern-
recognition techniques

Go has too high a branching factor
for existing search techniques
Current and future software must
rely on huge databases and pattern-
recognition techniques

Typical simple case
• 2-person game
• Players alternate moves
• Zero-sum: one player’s loss is the other’s gain
• Perfect information: both players have access to

complete information about the state of the game.
No information is hidden from either player.

• No chance (e.g., using dice) involved
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,

Othello,
• Not: Bridge, Solitaire, Backgammon, Poker, Rock-

Paper-Scissors, ...

How to play a game

• A way to play such a game is to:
– Consider all the legal moves you can make
– Compute the new position resulting from each move
– Evaluate each resulting position to determine which is best
– Make that move
– Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board”
– Generating all legal next boards
– Evaluating a position

Evaluation function
• Evaluation function or static evaluator is used to evaluate

the “goodness” of a game position.
– Contrast with heuristic search where the evaluation function was a

non-negative estimate of the cost from the start node to a goal and
passing through the given node

• The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.
– f(n) >> 0: position n good for me and bad for you
– f(n) << 0: position n bad for me and good for you
– f(n) near 0: position n is a neutral position
– f(n) = +infinity: win for me
– f(n) = -infinity: win for you

4

Evaluation function examples
• Example of an evaluation function for Tic-Tac-Toe:

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]
where a 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess
– f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces

and b(n) = sum of black’s

• Most evaluation functions are specified as a weighted sum of
position features:
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)

• Example features for chess are piece count, piece placement,
squares controlled, etc.

• Deep Blue had over 8000 features in its evaluation function

Game trees

• Problem spaces for typical games are
represented as trees

• Root node represents the current
board configuration; player must decide
the best single move to make next

• Static evaluator function rates a board
position. f(board) = real number with
f>0 “white” (me), f<0 for black (you)

• Arcs represent the possible legal moves for a player
• If it is my turn to move, then the root is labeled a "MAX" node;

otherwise it is labeled a "MIN" node, indicating my opponent's turn.
• Each level of the tree has nodes that are all MAX or all MIN; nodes at

level i are of the opposite kind from those at level i+1

Game Tree for Tic-Tac-Toe

MAX’s play →

MIN’s play →

Terminal state
(win for MAX) →

Here, symmetries have been used to
reduce the branching factor

MIN nodes

MAX nodes

Minimax procedure
• Create start node as a MAX node with current board

configuration
• Expand nodes down to some depth (a.k.a. ply) of

lookahead in the game
• Apply the evaluation function at each of the leaf nodes
• “Back up” values for each of the non-leaf nodes until a

value is computed for the root node
– At MIN nodes, the backed-up value is the minimum of the values

associated with its children.
– At MAX nodes, the backed-up value is the maximum of the values

associated with its children.

• Pick the operator associated with the child node whose
backed-up value determined the value at the root

5

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2This is the move
selected by minimaxStatic evaluator

value

Partial Game Tree for Tic-Tac-Toe

• f(n) = +1 if the position is a
win for X.

• f(n) = -1 if the position is a
win for O.

• f(n) = 0 if the position is a
draw.

Why use backed-up values?

Intuition: if our evaluation function is good, doing
look ahead and backing up the values with
Minimax should do better
At each non-leaf node N, the backed-up value is
the value of the best state that MAX can reach at
depth h if MIN plays well (by the same criterion as
MAX applies to itself)
If e is to be trusted in the first place, then the
backed-up value is a better estimate of how
favorable STATE(N) is than e(STATE(N))
We use a horizon h because in general, out time to
compute a move is limited.

Minimax Tree

MAX node

MIN node

f value
value computed

by minimax

6

Alpha-beta pruning

• We can improve on the performance of the minimax
algorithm through alpha-beta pruning

• Basic idea: “If you have an idea that is surely bad, don't
take the time to see how truly awful it is.” -- Pat Winston

2 7 1

=2

>=2

<=1

?

• We don’t need to compute
the value at this node.

• No matter what it is, it can’t
affect the value of the root
node.

MAX

MAX

MIN

Alpha-beta pruning

• Traverse the search tree in depth-first order
• At each MAX node n, alpha(n) = maximum value found so

far
• At each MIN node n, beta(n) = minimum value found so far

– Note: The alpha values start at -infinity and only increase, while beta
values start at +infinity and only decrease.

• Beta cutoff: Given a MAX node n, cut off the search below n
(i.e., don’t generate or examine any more of n’s children) if
alpha(n) >= beta(i) for some MIN node ancestor i of n.

• Alpha cutoff: stop searching below MIN node n if beta(n) <=
alpha(i) for some MAX node ancestor i of n.

Alpha-Beta Tic-Tac-Toe Example Alpha-Beta Tic-Tac-Toe Example

β = 2

2

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase

7

Alpha-Beta Tic-Tac-Toe Example

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase

1

β = 1

2

Alpha-Beta Tic-Tac-Toe Example

α = 1

The alpha value of a MAX
node is a lower bound on
the final backed-up value.
It can never decrease

1

β = 1

2

Alpha-Beta Tic-Tac-Toe Example

α = 1

1

β = 1

2 -1

β = -1

Alpha-Beta Tic-Tac-Toe Example

α = 1

1

β = 1

2 -1

β = -1

Search can be discontinued below
any MIN node whose beta value is
less than or equal to the alpha value
of one of its MAX ancestors

Search can be discontinued below
any MIN node whose beta value is
less than or equal to the alpha value
of one of its MAX ancestors

8

Alpha-beta general example

3 12 8 2 14 1

3MIN

MAX 3

2 - prune 14 1 - prune

Alpha-Beta Tic-Tac-Toe Example 2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

9

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

10

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

5

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

11

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

0

12

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

5

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

13

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

14

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

1

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

2

2

2

2

1

1

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

15

Alpha-beta algorithm
function MAX-VALUE (state, α, β)

;; α = best MAX so far; β = best MIN
if TERMINAL-TEST (state) then return UTILITY(state)
v := -∞
for each s in SUCCESSORS (state) do

v := MAX (v, MIN-VALUE (s, α, β))
if v >= β then return v
α := MAX (α, v)

end
return v

function MIN-VALUE (state, α, β)
if TERMINAL-TEST (state) then return UTILITY(state)
v := ∞
for each s in SUCCESSORS (state) do

v := MIN (v, MAX-VALUE (s, α, β))
if v <= α then return v
β := MIN (β, v)

end
return v

Effectiveness of alpha-beta
• Alpha-beta is guaranteed to compute the same value for the

root node as computed by minimax, with less or equal
computation

• Worst case: no pruning, examining bd leaf nodes, where
each node has b children and a d-ply search is performed

• Best case: examine only (2b)d/2 leaf nodes.
– Result is you can search twice as deep as minimax!

• Best case is when each player’s best move is the first
alternative generated

• In Deep Blue, they found empirically that alpha-beta
pruning meant that the average branching factor at each
node was about 6 instead of about 35!

Other Improvements
Adaptive horizon + iterative deepening
Extended search: Retain k>1 best paths, instead
of just one, and extend the tree at greater depth
below their leaf nodes to (help dealing with the
“horizon effect”)
Singular extension: If a move is obviously better
than the others in a node at horizon h, then expand
this node along this move
Use transposition tables to deal with repeated
states
Null-move search: assume player forfeits move;
do a shallow analysis of tree; result must surely be
worse than if player had moved. This can be used
to recognize moves that should be explored fully.

Games of chance
• Backgammon is a two-player
game with uncertainty.

•Players roll dice to determine
what moves to make.

•White has just rolled 5 and 6
and has four legal moves:

• 5-10, 5-11
•5-11, 19-24
•5-10, 10-16
•5-11, 11-16

•Such games are good for
exploring decision making in
adversarial problems involving
skill and luck.

16

Game trees with chance nodes
• Chance nodes (shown as
circles) represent random events

• For a random event with N
outcomes, each chance node has
N distinct children; a probability
is associated with each

• (For 2 dice, there are 21 distinct
outcomes)

• Use minimax to compute values
for MAX and MIN nodes

• Use expected values for chance
nodes

• For chance nodes over a max node,
as in C:

expectimax(C) = ∑i(P(di) * maxvalue(i))

• For chance nodes over a min node:

expectimin(C) = ∑i(P(di) * minvalue(i))

Max
Rolls

Min
Rolls

Meaning of the evaluation function

• Dealing with probabilities and expected values means we have to be careful
about the “meaning” of values returned by the static evaluator.

• Note that a “relative-order preserving” change of the values would not change
the decision of minimax, but could change the decision with chance nodes.

• Linear transformations are OK

A1 is best
move

A2 is best
move

2 outcomes
with prob
{.9, .1}

High-Performance Game Programs
Many game programs are based on alpha-beta +
iterative deepening + extended/singular search +
transposition tables + huge databases + ...

For instance, Chinook searched all checkers
configurations with 8 pieces or less and created an
endgame database of 444 billion board configurations

The methods are general, but their implementation is
dramatically improved by many specifically tuned-up
enhancements (e.g., the evaluation functions) like an
F1 racing car

Perspective on Games: Con and Pro

“Chess is the Drosophila of
artificial intelligence. However,
computer chess has developed
much as genetics might have if
the geneticists had concentrated
their efforts starting in 1910 on
breeding racing Drosophila. We
would have some science, but
mainly we would have very fast
fruit flies.”

John McCarthy, Stanford

“Saying Deep Blue doesn’t
really think about chess is like

saying an airplane doesn't really
fly because it doesn't flap its

wings.”

Drew McDermott, Yale

17

General Game PlayingGGP is a WebGGP is a Web--based software environment developed at based software environment developed at
Stanford that supports: Stanford that supports:

•• logical specification of many different games in terms of:logical specification of many different games in terms of:

•• relational descriptions of statesrelational descriptions of states

•• legal moves and their effectslegal moves and their effects

•• goal relations and their payoffsgoal relations and their payoffs

•• management of matches between automated playersmanagement of matches between automated players

•• competitions that involve many players and gamescompetitions that involve many players and games

The GGP framework (http://games.stanford.edu) encourages The GGP framework (http://games.stanford.edu) encourages
research on systems that exhibit research on systems that exhibit generalgeneral intelligence. intelligence.

This summer, AAAI will host its second GGP competition. This summer, AAAI will host its second GGP competition.

Other Issues

Multi-player games
E.g., many card games like Hearts

Multiplayer games with alliances
E.g., Risk
More on this when we discuss “game theory”
Good model for a social animal like humans,
where we are always balancing cooperation and
competition

General Game Playing
GGP is a Web-based software environment from Stanford

featuring
•Logical specification of many different games in terms of:
• relational descriptions of states
• legal moves and their effects
• goal relations and their payoffs

•Management of matches between automated players and of
competitions that involve many players and games

• The GGP framework (http://games.stanford.edu) encourages
research on systems that exhibit general intelligence

• AAAI held competitions in 2005 and 2006
• Competing programs given definition for a new game
• Had to learn how to play it and play it well

GGP Peg Jumping Game
; http://games.stanford.edu/gamemaster/games-debug/peg.kif
(init (hole a c3 peg))
(init (hole a c4 peg))
…
(init (hole d c4 empty))
…
(<= (next (pegs ?x)) (does jumper (jump ?sr ?sc ?dr ?dc)) (true (pegs ?y))

(succ ?x ?y)) (<= (next (hole ?sr ?sc empty)) (does jumper (jump ?sr ?sc ?dr ?dc)))
…
(<= (legal jumper (jump ?sr ?sc ?dr ?dc)) (true (hole ?sr ?sc peg))

(true (hole ?dr ?dc empty)) (middle ?sr ?sc ?or ?oc ?dr ?dc) (true (hole ?or ?oc peg)))
…
(<= (goal jumper 100) (true (hole a c3 empty)) (true (hole a c4 empty))

(true (hole a c5 empty))
…
(succ s1 s2)
(succ s2 s3)
…

