
1

1

Constraint Constraint
SatisfactionSatisfaction

Russell & Norvig Ch. 5

2

Overview

• Constraint satisfaction offers a powerful problem-
solving paradigm
– View a problem as a set of variables to which we have

to assign values that satisfy a number of problem-
specific constraints.

– Constraint programming, constraint satisfaction
problems (CSPs), constraint logic programming…

• Algorithms for CSPs
– Backtracking (systematic search)
– Constraint propagation (k-consistency)
– Variable and value ordering heuristics
– Backjumping and dependency-directed backtracking

3

Motivating example: 8 QueensMotivating example: 8 Queens

Generate-and-test, with no
redundancies “only” 88 combinations

Place 8 queens on a chess board such
That none is attacking another.

4

Motivating example: 8Motivating example: 8--QueensQueens

2

5

What more do we need for 8 queens?What more do we need for 8 queens?

• Not just a successor function and goal test
• But also

– a means to propagate the constraints imposed
by one queen on the others

– an early failure test
• Explicit representation of constraints and

constraint manipulation algorithms

6

Informal definition of CSP

• CSP = Constraint Satisfaction Problem, given
(1) a finite set of variables
(2) each with a domain of possible values (often finite)
(3) a set of constraints that limit the values the

variables can take on
• A solution is an assignment of a value to each variable

such that the constraints are all satisfied.
• Tasks might be to decide if a solution exists, to find a

solution, to find all solutions, or to find the “best
solution” according to some metric (objective
function).

7

Example: 8Example: 8--Queens ProblemQueens Problem

• 8 variables Xi, i = 1 to 8 where Xi is the
row number of queen in column i.

• Domain for each variable {1,2,…,8}
• Constraints are of the forms:

–Xi = k Xj ≠ k for all j = 1 to 8, j≠i
–Xi = ki, Xj = kj |i- j| ≠| ki - kj| for all j =

1 to 8, j≠i

8

Example: Task SchedulingExample: Task Scheduling

T1 must be done during T3
T2 must be achieved before T1 starts
T2 must overlap with T3
T4 must start after T1 is complete

T1

T2

T3

T4

3

9

Example: Map coloring
Color the following map using three colors
(red, green, blue) such that no two adjacent
regions have the same color.

E

D A

C

B

10

Map coloring
• Variables: A, B, C, D, E all of domain RGB
• Domains: RGB = {red, green, blue}
• Constraints: A≠B, A≠C,A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
• One solution: A=red, B=green, C=blue, D=green, E=blue

E
D A

C
B

E
D A

C
B

=>

11

Brute Force methods
• Finding a solution by a brute force search

is easy
– Generate and test is a weak method
– Just generate potential combinations and test

each

• Potentially very inefficient
– With n variables each of which can have one of

three values, there are 3n possible solutions to
check.

• There are about 190 countries in the world
today, which we can color using four
colors.

• 4190 is a bit number!

solve(A,B,C,D,E) :-
color(A),
color(B),
color(C),
color(D),
color(E),
not(A=B),
not(A=B),
not(B=C),
not(A=C),
not(C=D),
not(A=E),
not(C=D).

color(red).
color(green).
color(blue).

12

Example: SATisfiability
• Given a set of propositions containing variables,

find an assignment of the variables to {false,true}
that satisfies them.

• For example, the clauses:
– (A ∨ B ∨ ¬C) ∧ (¬A ∨ D)
– (equivalent to (C → A) ∨ (B ∧ D → A)

are satisfied by
A = false, B = true, C = false, D = false

• 3SAT is known to be NP-complete; in the worst
case, solving CSP problems requires exponential
time

4

13

Real-world problems

• Scheduling
• Temporal reasoning
• Building design
• Planning
• Optimization/satisfaction
• Vision

• Graph layout
• Network management
• Natural language

processing
• Molecular biology /

genomics
• VLSI design

CSPs are a good match for many practical problems that arise in
the real world

14

Constraint network/graph
A constraint network (CN) consists of
• a set of variables X = {x1, x2, … xn}

– each with an associated domain of values {d1, d2, … dn}.
– the domains are typically finite

• a set of constraints {c1, c2 … cm} where
– each defines a predicate which is a relation over a

particular subset of X.
– e.g., Ci involves variables {Xi1, Xi2, … Xik} and defines

the relation Ri ⊆ Di1 x Di2 x … Dik

• Unary constraint: only involves one variable
• Binary constraint: only involves two variables

15

Constraint Network/GraphConstraint Network/Graph

Binary constraints

T

WA

NT

SA

Q

NSW

V

Two variables are adjacent or neighbors if they
are connected by an edge or an arc

T1

T2

T3

T4

16

Formal definition of a CN

• Instantiations
–An instantiation of a subset of variables S

is an assignment of a value in its domain to
each variable in S

–An instantiation is legal iff it does not
violate any constraints.

• A solution is an instantiation of all of the
variables in the network.

5

17

Typical tasks for CSP
• Solutions:

– Does a solution exist?
– Find one solution
– Find all solutions
– Given a metric on solutions, find the best one
– Given a partial instantiation, do any of the above

• Transform the CN into an equivalent CN
that is easier to solve.

18

Binary CSP

• A binary CSP is a CSP where all constraints are
binary or unary

• Any non-binary CSP can be converted into a binary
CSP by introducing additional variables

• A binary CSP can be represented as a constraint
graph, which has a node for each variable and an
arc between two nodes if and only there is a
constraint involving the two variables
– Unary constraints appear as self-referential arcs

19

A running example: coloring AustraliaA running example: coloring Australia

• 7 variables {WA,NT,SA,Q,NSW,V,T}
• Each variable has the same domain {red, green, blue}
• No two adjacent variables have the same value:

WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
SA≠V,Q≠NSW, NSW≠V

T

WA

NT

SA

Q

NSW

V

20

A running example: coloring AustraliaA running example: coloring Australia

• Solutions are complete and consistent assignments
• One of several solutions
• Note that for generality, constraints can be

expressed as relations, e.g., WA ≠ NT is
(WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),

(blue,red),(blue,green)}

T

WA

NT

SA

Q

NSW

V

6

21

Backtracking example

22

Backtracking example

23

Backtracking example

24

Backtracking example

7

25

Basic Backtracking Algorithm
CSP-BACKTRACKING(PartialAssignment a)

– If a is complete then return a
– X select an unassigned variable
– D select an ordering for the domain of X
– For each value v in D do

If v is consistent with a then
– Add (X= v) to a
– result CSP-BACKTRACKING(a)
– If result ≠ failure then return result
– Remove (X= v) from a

– Return failure

Start with CSP-BACKTRACKING({})
Note: this is depth first search; can solve n-queens problems

for n ~ 25
26

Problems with backtracking

• Thrashing: keep repeating the same failed
variable assignments
– Consistency checking can help
– Intelligent backtracking schemes can also help

• Inefficiency: can explore areas of the search
space that aren’t likely to succeed
– Variable ordering can help

27

Improving backtracking efficiency

Here are some standard techniques to
improve the efficiency of backtracking

–Can we detect inevitable failure early?
–Which variable should be assigned next?
–In what order should its values be tried?

28

Forward Checking
After a variable X is assigned a value v, look at each
unassigned variable Y connected to X by a constraint
and delete from Y’s domain values inconsistent with v

Using forward checking and backward checking
roughly doubles the size of N-queens problems that
can be practically solved

8

29

Forward checking

• Keep track of remaining legal values for
unassigned variables

• Terminate search when any variable has no legal
values

30

Forward checking

31

Forward checking

32

Forward checking

9

33

Constraint propagation
• Forward checking propagates information

from assigned to unassigned variables, but
doesn't provide early detection for all failures.

• NT and SA cannot both be blue!

34

Definition: Arc consistency

• A constraint C_xy is said to be arc consistent w.r.t.
x if for each value v of x there is an allowed value
of y.

• Similarly, we define that C_xy is arc consistent
w.r.t. y.

• A binary CSP is arc consistent iff every constraint
C_xy is arc consistent wrt x as well as wrt y.

• When a CSP is not arc consistent, we can make it
arc consistent, e.g. by using AC3.
– This is also called “enforcing arc consistency”.

35

Arc Consistency Example

• Let domains be
– D_x = {1, 2, 3}, D_y = {3, 4, 5, 6}

• A constraint
– C_xy = {(1,3), (1,5), (3,3), (3,6)}

• C_xy is not arc consistent w.r.t. x, neither w.r.t. y.
By enforcing arc consistency, we get reduced
domains
– D’_x = {1, 3}, D’_y={3, 5, 6}

36

Arc consistency
• Simplest form of propagation makes each arc

consistent
• X Y is consistent iff for every value x of X there

is some allowed y

10

37

Arc consistency
• Simplest form of propagation makes each arc

consistent
• X Y is consistent iff for every value x of X there

is some allowed y

38

Arc consistency

If X loses a value, neighbors of X need to be
rechecked

39

Arc consistency

• Arc consistency detects failure earlier than forward
checking

• Can be run as a preprocessor or after each assignment

40

General CP for Binary ConstraintsGeneral CP for Binary Constraints

Algorithm AC3
• contradiction false
• Q stack of all variables
• while Q is not empty and not contradiction do

– X UNSTACK(Q)
– For every variable Y adjacent to X do

• If REMOVE-ARC-INCONSISTENCIES(X,Y) then
– If Y’s domain is non-empty then STACK(Y,Q)
– Else return false

11

41

Complexity of AC3

• e = number of constraints (edges)
• d = number of values per variable
• Each variables is inserted in Q up to d times
• REMOVE-ARC-INCONSISTENCY takes O(d2)

time
• CP takes O(ed3) time

42

Improving backtracking efficiency

• Here are some standard techniques to
improve the efficiency of backtracking
–Can we detect inevitable failure early?
–Which variable should be assigned next?
–In what order should its values be tried?

• Combining constraint propagation with these
heuristics makes 1000 N- queen puzzles
feasible

43

Most constrained variable

• Most constrained variable:
choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)
heuristic

44

Most constraining variable
• Tie- breaker among most constrained variables
• Most constraining variable:

–choose variable involved in largest # of
constraints on remaining variables

12

45

Least constraining value

• Given a variable, choose least constraining
value:
– the one that rules out the fewest values in the

remaining variables

• Combining these heuristics makes 1000
queens feasible

46

Is AC3 Alone Sufficient?Is AC3 Alone Sufficient?

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

47

Solving a CSP still requires searchSolving a CSP still requires search

• Search:
– can find good solutions, but must examine non-

solutions along the way
• Constraint Propagation:

– can rule out non-solutions, but this is not the
same as finding solutions:

• Interweave constraint propagation and
search
– Perform constraint propagation at each search

step.
48

1

3

2

4

32 41

1

3

2

4

32 41

1

3

2

4

32 41
1

3

2

4

32 41

13

49

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

50

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

51

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=3 eliminates { X3=2, X3=3, X3=4 }
⇒ inconsistent!

52

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=4 ⇒ X3=2, which eliminates { X4=2, X4=3}
⇒ inconsistent!

14

53

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3, }

X4
{1,2,3,4}

X2
{1,2,3,4}

X3=2 eliminates { X4=2, X4=3}
⇒ inconsistent!

54

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

55

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

56

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

15

57

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

58

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

59

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

60

Local search for constraint problems

• Remember local search?
• A version of local search exists for constraint

problems
• Basic idea:

– generate a random “solution”
– Use metric of “number of conflicts”
– Keep modifying solution by reassigning one variable at a

time to decrease metric until a solution is found or no
modification improves it

• Has all the features and problems of local search

16

61

Min Conflict Example

h = 5 h = 2 h = 0

•States: 4 Queens, 1 per column

•Operators: Move queen in its column

•Goal test: No attacks

•Evaluation metric: Total number of attacks

62

Basic Local Search Algorithm

Assign a domain value di to each variable vi
while no solution and not stuck and not timed out

bestCost ←∞; bestList ←∅;
for each variable vi | Cost(Value(vi)) > 0

for each domain value di of vi
if Cost(di) < bestCost

bestCost ← Cost(di); bestList ← di;
else if Cost(di) = bestCost

bestList ← bestList ∪ di
Take a randomly selected move from bestList

63

Eight Queens using Backtracking

Try Queen 1Try Queen 2Try Queen 3Try Queen 4Try Queen 5

Stuck!

Undo move

for Queen 5
Try next value

for Queen 5
Still Stuck

Undo move
for Queen 5
no move left

Backtrack and
undo last move

for Queen 4

Try next value
for Queen 4

Try Queen 5Try Queen 6Try Queen 7

Stuck Again
Undo move
for Queen 7
and so on...

64

Place 8 Queens
randomly on

the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move

3 1 054 111

Take least cost
move then try
another Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32

2 2 3 42 2 2 12

3 2 32 1 1 2 31

2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

2 3 2 32 2 1 31

2 2 32 1 3 2 11

3 2 23 3 3 3 01

Answer Found

17

65

Backtracking Performance

0

1000

2000

3000

4000

5000

0 4 8 12 16 20 24 28 32

Number of Queens

Ti
m

e
in

 s
ec

on
ds

66

Local Search Performance

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000

Number of Queens

Ti
m

e
in

 s
ec

on
ds

67

Min Conflict Performance

• Performance depends on quality and
informativeness of initial assignment; inversely
related to distance to solution

• Min Conflict often has astounding performance.
• For example, it’s been shown to solve arbitrary

size (in the millions) N-Queens problems in
constant time.

• This appears to hold for arbitrary CSPs with the
caveat…

68

Min Conflict Performance

Except in a certain critical range of the ratio
constraints to variables.

R

CPU
time

critical
 ratio

18

69

A famous example:
Labeling line drawings

• Waltz labeling algorithm – one of the earliest CSP applications
– Convex interior lines are labeled as +
– Concave interior lines are labeled as –
– Boundary lines are labeled as

• There are 208 labeling (most of which are impossible)
• Here are the 18 legal labeling:

70

Labeling line drawings II

• Here are some illegal labelings:

+ + -
-

-

71

Labeling line drawings (cont.)

• Waltz labeling algorithm: Propagate constraints repeatedly
until a solution is found

A solution for one
labeling problem

A labeling problem
with no solution

72

K-consistency
• K- consistency generalizes the notion of arc

consistency to sets of more than two variables.
– A graph is K-consistent if, for legal values of any K-1

variables in the graph, and for any Kth variable Vk, there
is a legal value for Vk

• Strong K-consistency = J-consistency for all J<=K
• Node consistency = strong 1-consistency
• Arc consistency = strong 2-consistency
• Path consistency = strong 3-consistency

19

73

Why do we care?

1. If we have a CSP with N variables that
is known to be strongly N-consistent,
we can solve it without backtracking

2. For any CSP that is strongly K-
consistent, if we find an appropriate
variable ordering (one with “small
enough” branching factor), we can
solve the CSP without backtracking

74

Intelligent backtracking

• Backjumping: if Vj fails, jump back to the variable Vi with
greatest i such that the constraint (Vi, Vj) fails (i.e., most
recently instantiated variable in conflict with Vi)

• Backchecking: keep track of incompatible value
assignments computed during backjumping

• Backmarking: keep track of which variables led to the
incompatible variable assignments for improved
backchecking

75

Challenges for constraint reasoning

• What if not all constraints can be satisfied?
– Hard vs. soft constraints
– Degree of constraint satisfaction
– Cost of violating constraints

• What if constraints are of different forms?
– Symbolic constraints
– Numerical constraints [constraint solving]
– Temporal constraints
– Mixed constraints

76

Challenges for constraint reasoning

• What if constraints are represented intensionally?
– Cost of evaluating constraints (time, memory, resources)

• What if constraints, variables, and/or values change
over time?
– Dynamic constraint networks
– Temporal constraint networks
– Constraint repair

• What if you have multiple agents or systems
involved in constraint satisfaction?
– Distributed CSPs
– Localization techniques

