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Constraint Constraint 
SatisfactionSatisfaction

Russell & Norvig Ch. 5
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Overview

• Constraint satisfaction offers a powerful problem-
solving paradigm
– View a problem as a set of variables to which we have 

to assign values that satisfy a number of problem-
specific constraints.

– Constraint programming, constraint satisfaction 
problems (CSPs), constraint logic programming…

• Algorithms for CSPs
– Backtracking (systematic search)
– Constraint propagation (k-consistency)
– Variable and value ordering heuristics
– Backjumping and dependency-directed backtracking
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Motivating example: 8 QueensMotivating example: 8 Queens

Generate-and-test, with no
redundancies “only” 88 combinations

Place 8 queens on a chess board such
That none is attacking another.
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Motivating example: 8Motivating example: 8--QueensQueens
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What more do we need for 8 queens?What more do we need for 8 queens?

• Not just a successor function and goal test
• But also 

– a means to propagate the constraints imposed 
by one queen on the others 

– an early failure test
• Explicit representation of constraints and 

constraint manipulation algorithms
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Informal definition of CSP

• CSP = Constraint Satisfaction Problem, given
(1) a finite set of variables
(2) each with a domain of possible values (often finite)
(3) a set of constraints that limit the values the 

variables can take on
• A solution is an assignment of a value to each variable 

such that the constraints are all satisfied.
• Tasks might be to decide if a solution exists, to find a 

solution, to find all solutions, or to find the “best 
solution” according to some metric (objective 
function).
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Example: 8Example: 8--Queens ProblemQueens Problem

• 8 variables Xi, i = 1 to 8 where Xi is the 
row number of queen in column i.

• Domain for each variable {1,2,…,8}
• Constraints are of the forms:

–Xi = k Xj ≠ k  for all j = 1 to 8, j≠i
–Xi = ki, Xj = kj |i- j| ≠| ki - kj| for all j = 

1 to 8, j≠i
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Example: Task SchedulingExample: Task Scheduling

T1 must be done during T3
T2 must be achieved before T1 starts
T2 must overlap with T3
T4 must start after T1 is complete

T1

T2

T3

T4
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Example: Map coloring
Color the following map using three colors 
(red, green, blue) such that no two adjacent 
regions have the same color.

E

D A

C

B
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Map coloring 
• Variables:  A, B, C,  D,  E all of domain RGB
• Domains: RGB = {red, green, blue}
• Constraints: A≠B, A≠C,A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
• One solution: A=red, B=green, C=blue, D=green, E=blue

E
D A

C
B

E
D A

C
B

=>
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Brute Force methods
• Finding a solution by a brute force search 

is easy
– Generate and test is a weak method
– Just generate potential combinations and test 

each

• Potentially very inefficient
– With n variables each of which can have one of 

three values, there are 3n possible solutions to 
check.

• There are about 190 countries in the world 
today, which we can color using four 
colors.

• 4190 is a bit number!

solve(A,B,C,D,E) :-
color(A),
color(B),
color(C),
color(D),
color(E),
not(A=B),
not(A=B),
not(B=C),
not(A=C),
not(C=D),
not(A=E),
not(C=D).

color(red).
color(green).
color(blue).
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Example: SATisfiability
• Given a set of propositions containing variables, 

find an assignment of the variables to {false,true} 
that satisfies them.

• For example, the clauses:
– (A ∨ B ∨ ¬C) ∧ ( ¬A ∨ D)
– (equivalent to (C → A) ∨ (B ∧ D → A)

are satisfied by
A = false, B = true,  C = false, D = false

• 3SAT is known to be NP-complete; in the worst 
case, solving CSP problems requires exponential 
time
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Real-world problems

• Scheduling
• Temporal reasoning
• Building design
• Planning
• Optimization/satisfaction
• Vision

• Graph layout
• Network management
• Natural language 

processing
• Molecular biology / 

genomics
• VLSI design

CSPs are a good match for many practical problems that arise in 
the real world
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Constraint network/graph
A constraint network (CN) consists of
• a set of variables X = {x1, x2, … xn} 

– each with an associated domain of values {d1, d2, … dn}.  
– the domains are typically finite

• a set of constraints {c1, c2 … cm} where
– each defines a predicate which is a relation over a 

particular subset of X.  
– e.g., Ci involves variables {Xi1, Xi2, … Xik} and defines 

the relation Ri ⊆ Di1 x Di2 x … Dik

• Unary constraint: only involves one variable
• Binary constraint: only involves two variables
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Constraint Network/GraphConstraint Network/Graph

Binary constraints

T

WA

NT

SA

Q

NSW

V

Two variables are adjacent or neighbors if they
are connected by an edge or an arc

T1

T2

T3

T4
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Formal definition of a CN

• Instantiations
–An instantiation of a subset of variables S 

is an assignment of a value in its domain to 
each variable in S

–An instantiation is legal iff it does not 
violate any constraints.

• A solution is an instantiation of all of the 
variables in the network.
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Typical tasks for CSP
• Solutions:

– Does a solution exist?
– Find one solution
– Find all solutions
– Given a metric on solutions, find the best one
– Given a partial instantiation, do any of the above

• Transform the CN into an equivalent CN 
that is easier to solve.
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Binary CSP

• A binary CSP is a CSP where all constraints are 
binary or unary

• Any non-binary CSP can be converted into a binary 
CSP by introducing additional variables

• A binary CSP can be represented as a constraint 
graph, which has a node for each variable and an 
arc between two nodes if and only there is a 
constraint involving the two variables
– Unary constraints appear as self-referential arcs
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A running example: coloring AustraliaA running example: coloring Australia

• 7 variables {WA,NT,SA,Q,NSW,V,T}
• Each variable has the same domain {red, green, blue}
• No two adjacent variables have the same value:

WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
SA≠V,Q≠NSW, NSW≠V

T

WA

NT

SA

Q

NSW

V
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A running example: coloring AustraliaA running example: coloring Australia

• Solutions are complete and consistent assignments
• One of several solutions
• Note that for generality, constraints can be 

expressed as relations, e.g., WA ≠ NT is
(WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),

(blue,red),(blue,green)}

T

WA

NT

SA

Q

NSW

V
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Backtracking example
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Backtracking example
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Backtracking example
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Backtracking example



7

25

Basic Backtracking Algorithm
CSP-BACKTRACKING(PartialAssignment a)

– If a is complete then return a
– X select an unassigned variable
– D select an ordering for the domain of X
– For each value v in D do

If v is consistent with a then 
– Add (X= v) to a
– result CSP-BACKTRACKING(a)
– If result ≠ failure then return result  
– Remove (X= v) from a

– Return failure

Start with CSP-BACKTRACKING({})
Note: this is depth first search; can solve n-queens problems 

for n ~ 25
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Problems with backtracking

• Thrashing: keep repeating the same failed 
variable assignments
– Consistency checking can help
– Intelligent backtracking schemes can also help

• Inefficiency: can explore areas of the search 
space that aren’t likely to succeed
– Variable ordering can help
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Improving backtracking efficiency

Here are some standard techniques to 
improve the efficiency of backtracking

–Can we detect inevitable failure early?
–Which variable should be assigned next?
–In what order should its values be tried?
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Forward Checking
After a variable X is assigned a value v, look at each 
unassigned variable Y connected to X by a constraint 
and delete from Y’s domain values inconsistent with v

Using forward checking and backward checking 
roughly doubles the size of N-queens problems that 
can be practically solved
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Forward checking

• Keep track of remaining legal values for 
unassigned variables

• Terminate search when any variable has no legal 
values

30

Forward checking

31

Forward checking

32

Forward checking
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Constraint propagation
• Forward checking propagates information 

from assigned to unassigned variables, but 
doesn't provide early detection for all failures.

• NT and SA cannot both be blue!
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Definition: Arc consistency

• A constraint C_xy is said to be arc consistent w.r.t. 
x if for each value v of x there is an allowed value 
of y.

• Similarly, we define that C_xy is arc consistent 
w.r.t. y.

• A binary CSP is arc consistent iff every constraint 
C_xy is arc consistent wrt x as well as wrt y.

• When a CSP is not arc consistent, we can make it 
arc consistent, e.g. by using AC3.
– This is also called “enforcing arc consistency”.
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Arc Consistency Example

• Let domains be 
– D_x = {1, 2, 3}, D_y = {3, 4, 5, 6}

• A constraint 
– C_xy = {(1,3), (1,5), (3,3), (3,6)}

• C_xy is not arc consistent w.r.t. x, neither w.r.t. y. 
By enforcing arc consistency, we get reduced 
domains 
– D’_x = {1, 3}, D’_y={3, 5, 6}

36

Arc consistency
• Simplest form of propagation makes each arc 

consistent
• X Y is consistent iff for every value x of X there 

is some allowed y
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Arc consistency
• Simplest form of propagation makes each arc 

consistent
• X Y is consistent iff for every value x of X there 

is some allowed y

38

Arc consistency

If X loses a value, neighbors of X need to be 
rechecked
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Arc consistency

• Arc consistency detects failure earlier than forward 
checking

• Can be run as a preprocessor or after each assignment
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General CP for Binary ConstraintsGeneral CP for Binary Constraints

Algorithm AC3
• contradiction false
• Q stack of all variables
• while Q is not empty and not contradiction do

– X UNSTACK(Q)
– For every variable Y adjacent to X do

• If REMOVE-ARC-INCONSISTENCIES(X,Y) then
– If Y’s domain is non-empty then STACK(Y,Q)
– Else return false
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Complexity of AC3

• e = number of constraints (edges)
• d = number of values per variable
• Each variables is inserted in Q up to d times
• REMOVE-ARC-INCONSISTENCY takes O(d2) 

time
• CP takes O(ed3) time
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Improving backtracking efficiency

• Here are some standard techniques to 
improve the efficiency of backtracking
–Can we detect inevitable failure early?
–Which variable should be assigned next?
–In what order should its values be tried?

• Combining constraint propagation with these 
heuristics makes 1000 N- queen puzzles 
feasible
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Most constrained variable

• Most constrained variable:
choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)
heuristic
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Most constraining variable
• Tie- breaker among most constrained variables
• Most constraining variable:

–choose variable involved in largest # of 
constraints on remaining variables
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Least constraining value

• Given a variable, choose least constraining 
value:
– the one that rules out the fewest values in the 

remaining variables

• Combining these heuristics makes 1000 
queens feasible
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Is AC3 Alone Sufficient?Is AC3 Alone Sufficient?

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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Solving a CSP still requires searchSolving a CSP still requires search

• Search: 
– can find good solutions, but must examine non-

solutions along the way
• Constraint Propagation:

– can rule out non-solutions, but this is not the 
same as finding solutions:

• Interweave constraint propagation and 
search
– Perform constraint propagation at each search 

step.
48

1

3

2

4

32 41

1

3

2

4

32 41

1

3

2

4

32 41
1

3

2

4

32 41
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=3  eliminates { X3=2, X3=3, X3=4 }
⇒ inconsistent!
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=4 ⇒ X3=2, which eliminates { X4=2, X4=3}
⇒ inconsistent!
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3, }

X4
{1,2,3,4}

X2
{1,2,3,4}

X3=2 eliminates { X4=2, X4=3}
⇒ inconsistent!
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}



15

57

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}
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Local search for constraint problems

• Remember local search?
• A version of local search exists for constraint 

problems
• Basic idea: 

– generate a random “solution”
– Use metric of “number of conflicts”
– Keep modifying solution by reassigning one variable at a 

time to decrease metric until a solution is found or no 
modification improves it

• Has all the features and problems of local search
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Min Conflict Example

h = 5 h = 2 h = 0

•States: 4 Queens, 1 per column

•Operators: Move queen in its column

•Goal test: No attacks

•Evaluation metric: Total number of attacks

62

Basic Local Search Algorithm

Assign a domain value di to each variable vi
while no solution and not stuck and not timed out

bestCost ←∞; bestList ←∅;
for each variable vi | Cost(Value(vi)) > 0

for each domain value di of vi 
if Cost(di) < bestCost 

bestCost ← Cost(di); bestList ← di;
else if Cost(di) = bestCost

bestList ← bestList ∪ di
Take a randomly selected move from bestList
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Eight Queens using Backtracking

Try Queen 1Try Queen 2Try Queen 3Try Queen 4Try Queen 5

Stuck!

Undo move

for Queen 5
Try next value

for Queen 5
Still Stuck

Undo move
for Queen 5
no move left

Backtrack and
undo last move

for Queen 4

Try next value
for Queen 4

Try Queen 5Try Queen 6Try Queen 7

Stuck Again
Undo move
for Queen 7
and so on...
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Place 8 Queens
randomly on

the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move

3 1 054 111

Take least cost
move then try
another Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32

2 2 3 42 2 2 12

3 2 32 1 1 2 31

2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

2 3 2 32 2 1 31

2 2 32 1 3 2 11

3 2 23 3 3 3 01

Answer Found
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Backtracking Performance

0

1000

2000

3000

4000

5000

0 4 8 12 16 20 24 28 32

Number of Queens

Ti
m

e 
in

 s
ec

on
ds

  

66

Local Search Performance
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Min Conflict Performance

• Performance depends on quality and 
informativeness of initial assignment; inversely 
related to distance to solution 

• Min Conflict often has astounding performance.
• For example, it’s been shown to solve arbitrary 

size (in the millions)  N-Queens problems in 
constant time.

• This appears to hold for arbitrary CSPs with the 
caveat…
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Min Conflict Performance

Except in a certain critical range of the ratio 
constraints to variables.

R

CPU
time

critical
   ratio
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A famous example:
Labeling line drawings

• Waltz labeling algorithm – one of the earliest CSP applications
– Convex interior lines are labeled as +
– Concave interior lines are labeled as –
– Boundary lines are labeled as

• There are 208 labeling (most of which are impossible)
• Here are the 18 legal labeling:

70

Labeling line drawings II

• Here are some illegal labelings:

+ + -
-

-
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Labeling line drawings (cont.)

• Waltz labeling algorithm: Propagate constraints repeatedly 
until a solution is found

A solution for one 
labeling problem

A labeling problem 
with no solution
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K-consistency
• K- consistency generalizes the notion of arc 

consistency to sets of  more than two variables.
– A graph is K-consistent if, for legal values of any K-1 

variables in the graph, and for any Kth variable Vk, there 
is a legal value for Vk

• Strong K-consistency = J-consistency for all J<=K
• Node consistency = strong 1-consistency
• Arc consistency = strong 2-consistency
• Path consistency = strong 3-consistency
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Why do we care?

1. If we have a CSP with N variables that 
is known to be strongly N-consistent, 
we can solve it without backtracking

2. For any CSP that is strongly K-
consistent, if we find an appropriate 
variable ordering (one with “small 
enough” branching factor), we can 
solve the CSP without backtracking
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Intelligent backtracking

• Backjumping: if Vj fails, jump back to the variable Vi with 
greatest i such that the constraint (Vi, Vj) fails (i.e., most 
recently instantiated variable in conflict with Vi)

• Backchecking: keep track of incompatible value 
assignments computed during backjumping

• Backmarking: keep track of which variables led to the 
incompatible variable assignments for improved 
backchecking
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Challenges for constraint reasoning

• What if not all constraints can be satisfied?
– Hard vs. soft constraints
– Degree of constraint satisfaction
– Cost of violating constraints

• What if constraints are of different forms?
– Symbolic constraints
– Numerical constraints [constraint solving]
– Temporal constraints
– Mixed constraints
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Challenges for constraint reasoning

• What if constraints are represented intensionally?
– Cost of evaluating constraints (time, memory, resources)

• What if constraints, variables, and/or values change 
over time?
– Dynamic constraint networks
– Temporal constraint networks
– Constraint repair

• What if you have multiple agents or systems 
involved in constraint satisfaction?
– Distributed CSPs
– Localization techniques


