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Chapter 4Chapter 4

Some material adopted from notes 
by Charles R. Dyer, University of 

Wisconsin-Madison

Note: We will skip Section 4.4

Today’s class

• Heuristic search
• Best-first search

– Greedy search
– Beam search
– A, A*
– Examples

• Memory-conserving variations of A*
• Heuristic functions
• Iterative improvement methods

– Hill climbing
– Simulated annealing
– Local beam search
– Genetic algorithms

• Online search

Heuristic
Webster's Revised Unabridged Dictionary (1913) (web1913)
Heuristic \Heu*ris"tic\, a. [Gr. ? to discover.] Serving to discover or find out.

The Free On-line Dictionary of Computing (15Feb98) 
heuristic  1. <programming> A rule of thumb, simplification or educated guess 
that reduces or limits the search for solutions in domains that are difficult and 
poorly understood. Unlike algorithms, heuristics do not guarantee feasible 
solutions and are often used with no theoretical guarantee. 2. <algorithm> 
approximation algorithm.

From WordNet (r) 1.6
heuristic adj 1: (computer science) relating to or using a heuristic rule 2: of or 
relating to a general formulation that serves to guide investigation [ant: 
algorithmic] n : a commonsense rule (or set of rules) intended to increase the 
probability of solving some problem [syn: heuristic rule, heuristic program]

Informed methods add 
domain-specific information

• Add domain-specific information to select the best path 
along which to continue searching

• Define a heuristic function, h(n), that estimates the 
“goodness” of a node n. 

• Specifically, h(n) = estimated cost (or distance) of 
minimal cost path from n to a goal state. 

• The heuristic function is an estimate, based on domain-
specific information that is computable from the 
current state description, of how close we are to a goal 
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Heuristics
• All domain knowledge used in the search is encoded in the 

heuristic function h. 
• Heuristic search is an example of a “weak method” because 

of the limited way that domain-specific information is used to 
solve the problem. 

• Examples:
– Missionaries and Cannibals: Number of people on starting river bank
– 8-puzzle: Number of tiles out of place 
– 8-puzzle: Sum of distances each tile is from its goal position 

• In general:
– h(n) >= 0 for all nodes n 
– h(n) = 0 implies that n is a goal node 
– h(n) = infinity implies that n is a dead-end from which a goal cannot be 

reached 

Weak vs. strong methods
• We use the term weak methods to refer to methods that are 

extremely general and not tailored to a specific situation. 
• Examples of weak methods include 

– Means-ends analysis is a strategy in which we try to represent the 
current situation and where we want to end up and then look for 
ways to shrink the differences between the two. 

– Space splitting is a strategy in which we try to list the possible 
solutions to a problem and then try to rule out classes of these
possibilities. 

– Subgoaling means to split a large problem into several smaller ones 
that can be solved one at a time.

• Called “weak” methods because they do not take advantage 
of more powerful domain-specific heuristics

Heuristics for 8-puzzle 

The number of 
misplaced tiles
(not including 
the blank)

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

In this case, only “8” is misplaced, so the heuristic 
function evaluates to 1.

In other words, the heuristic is telling us, that it thinks a 
solution might be available in just 1 more move.

Goal 
State

Current 
State

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

N N N
N N N
N Y

Heuristics for 8-puzzle 

Manhattan 
Distance (not 
including the 
blank)

• In this case, only the “3”, “8” and “1” tiles are 
misplaced, by 2, 3, and 3 squares respectively,  so 
the heuristic function evaluates to 8.

• In other words, the heuristic is telling us, that it 
thinks a solution is available in just 8 more moves.

• The misplaced heuristic’s value is 3.

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal 
State

Current 
State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8
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5

6 4

3

4 2

1 3 3

0 2

We can use 
heuristics to guide 
search. 

In this hill climbing
example, the 
Manhattan Distance 
heuristic helps us 
quickly find a 
solution to the 8-
puzzle.   

h(n)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

1 2 3
4 5 8
6 7

1 2 3
4 5
6 7 8

1 2 3
4 5 8
6 7

1 2 3
4 5
6 7 8

1 2
4 5 3
6 7 8

6

7 5

6 6

In this example, 
hill climbing 
does not work!

All the nodes 
on the fringe 
are taking a step 
“backwards”
(local minima)

Note that this 
puzzle is
solvable in just 
12 more steps.

h(n)

Best-first search

• A  search algorithm which optimizes depth-
first search by expanding the most promising 
node chosen according to some rule. 

• Order nodes on the nodes list by increasing 
value of an evaluation function, f(n), that 
incorporates domain-specific information in 
some way. 

• This is a generic way of referring to the class 
of informed methods.

Greedy best first search search

• Use as an evaluation function f(n) = h(n), 
sorting nodes by increasing values of f.

• Selects node to expand believed to be 
closest (hence “greedy”) to a goal node 
(i.e., select node with smallest f value) 

• Not complete 
• Not admissible, as in the example. 

Assuming all arc costs are 1, then greedy 
search will find goal g, which has a 
solution cost of 5, while the optimal 
solution is the path to goal g2 with cost 3. 

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0
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Beam search

• Use an evaluation function f(n), but the maximum size of 
the nodes list is k, a fixed constant 

• Only keeps k best nodes as candidates for expansion, and 
throws the rest away 

• k is the “beam width”
• More space efficient than greedy search, but may throw 

away a node that is on a solution path 
• As k increases, beam search approaches best first search
• Not complete 
• Not admissible (optimal)

Algorithm A
• Use as an evaluation function

f(n) = g(n) + h(n)
• g(n) = minimal-cost path from the start 

state to state n. 
• The g(n) term adds a “breadth-first” 

component to the evaluation function.
• Ranks nodes on search frontier by 

estimated cost of solution from start 
node through the given node  to goal. 

• Not complete if h(n) can equal infinity.
• Not admissible (optimal). 

S

BA

D
G

1 5 8

3

8

1

5

C

1

9

4

5 8
9

g(d)=4
h(d)=9

C is chosen 
next to expand

Algorithm A
1 Put the start node S on the nodes list, called OPEN 
2 If OPEN is empty, exit with failure 
3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If n is a goal node, collect path back to start and stop.
5 Expand n, generating all its successors and attach to them 

pointers back to n.  For each successor n' of n 
1 If n' is not already on OPEN or CLOSED

• put n ' on OPEN
• compute h(n'),  g(n')=g(n)+ c(n,n'),  f(n')=g(n')+h(n')

2 If n' is already on OPEN or CLOSED and if g(n') is lower for 
the new version of n', then:
• Redirect pointers backward from n' along path yielding lower g(n').
• Put n' on OPEN.

Algorithm A*

• “A star”
• Described by Hart and Nilsson in 1968
• Algorithm A with constraint that h(n) <= h*(n)
• h*(n) = true cost of the minimal cost path from n to a goal. 
• h is admissible when h(n) <= h*(n) holds.
• Using an admissible heuristic guarantees that the first solution

found will be an optimal one. 
• A* is complete whenever the branching factor is finite, and 

every operator has a fixed positive cost 
• A* is admissible
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Some observations on A
• Perfect heuristic: If h(n) = h*(n) for all n, then only the 

nodes on the optimal solution path will be expanded. So, no 
extra work will be performed. 

• Null heuristic: If h(n) = 0 for all n, then this is an 
admissible heuristic and  A* acts like Uniform-Cost Search.

• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal 
nodes, then h2 is a better heuristic than h1 
– If A1* uses h1, and A2* uses h2, then every node 

expanded by A2* is also expanded by A1*. 
– i.e., A1 expands at least as many nodes as A2*. 
– We say that A2* is better informed than A1*. 

• The closer h is to h*, the fewer extra nodes that will be 
expanded 

Example search space

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

∞∞ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

85

g value

Example
n g(n) h(n) f(n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 inf inf inf
E 8 inf inf inf
G 9 0 9 0

• h*(n) is the (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9

Greedy search

f(n) = h(n)
node expanded    nodes list

{ S(8) }

S         { C(3) B(4) A(8) }

C         { G(0) B(4) A(8) }

G         { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded. 
• See how fast the search is!! But it is NOT optimal. 
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A* search

f(n) = g(n) + h(n)

node exp.     nodes list

{ S(8) }

S         { A(9) B(9) C(11) }

A         { B(9) G(10) C(11) D(inf) E(inf) }

B         { G(9) G(10) C(11) D(inf) E(inf) }   

G         { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..  
• Still pretty fast. And optimal, too.

Argument for the optimality of A*
• Assume that A* has selected G2, a goal state with a 

suboptimal solution, i.e., g(G2) > f*
• We show that this is impossible. 

– Choose a node n on the optimal path to G. 
– Because h(n) is admissible,  f* >= f(n).
– If we choose G2 instead of n for expansion, 

f(n)>=f(G2).
– This implies f*>=f(G2).
– G2 is a goal state: h(G2) = 0, f(G2) = g(G2). 
– Therefore f* >= g(G2)
– Contradiction

Dealing with hard problems
• For large problems, A* may require too much space
• Two variations conserve memory: IDA* and SMA*
• IDA* -- iterative deepening A* -- uses successive 

iteration with growing limits on f, e.g.
– A* but don’t consider any node n where f(n) >10
– A* but don’t consider any node n where f(n) >20
– A* but don’t consider any node n where f(n) >30, ...

• SMA* -- Simplified Memory-Bounded A*
– uses a queue of restricted size to limit memory 

use.

On finding a a good heuristic
• If h1(n) < h2(n) <= h*(n) for all n, h2 is better than 

(dominates) h1
• Relaxing the problem: remove constraints to create a 

(much) easier problem; use the solution cost for this 
problem as the heuristic function

• Combining heuristics: take the max of several admissible 
heuristics: still have an admissible heuristic, and it’s better!

• Use statistical estimates to compute g; may lose 
admissibility

• Identify good features, then use a learning algorithm to find 
a heuristic function; also may lose admissibility
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CLASS EXERCISE
• Let’s revisit the Sudoku problem from before.
• What would an admissible heuristic function look like?
• What would a good heuristic function look like?

2

3

1

3

Local search

• AKA “incremental improvement” search
• Another approach to search involves 

starting with an initial guess at a solution 
and gradually improving it until it is one

• Some examples:
– Hill climbing
– Simulated annealing
– Local beam search
– Genetic algorithms
– Tabu search

Hill Climbing
• Extended the current path  with a successor node 

which is closer to the solution than the end of the 
current path

• If our goal is to get to the top of a hill, then always 
take a step the leads you up

• Simple hill climbing – take any upward step
• Steepest ascent hill climbing – consider all possible 

steps, and take the one that goes up the most

Hill climbing on a surface of states

Height Defined by 
Evaluation Function
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Hill-climbing search
• If there exists a successor s for the current state n such that 

– h(s) < h(n)
– h(s) <= h(t) for all the successors t of n, 

then move from n to s. Otherwise, halt at n. 
• Looks one step ahead to determine if any successor is better 

than the current state; if there is, move to the best successor.
• Like Greedy search in that it uses h, but doesn’t allow 

backtracking or jumping to an alternative path since it 
doesn’t “remember” where it has been.

• Is Beam search with a beam width of 1 (i.e., the maximum 
size of the nodes list is 1). 

• Not complete since the search will terminate at "local 
minima," "plateaus," and "ridges." 

Hill climbing example 
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8 4

7 6 5

2

3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(number of tiles out of place)

Drawbacks of hill climbing
•Uncooperative search spaces with

–Local Maxima: peaks that aren’t the highest point in 
the space

–Plateaus: the space has a broad flat region that gives 
the search algorithm no direction (random walk)

–Ridges: flat like a plateau, but with dropoffs to the 
sides; steps to the North, East, South and West may go 
down, but a step to the NW may go up.

•Remedies: 
–Random restart
–Problem reformulation

•Some problem spaces are great for hill climbing 
and others are terrible.

Example of a local optimum

1 2 5
7 4

8 6 3
4

1 2 3
8
7 6 5

1 2 5
7 4

8 6 3

2 5
1 7 4
8 6 3

1 2 5
8 7 4

6 3

-3

-4

-4

-4

0

start goal
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Annealing

• In metallurgy, annealing is a technique
involving heating and controlled cooling
of a material to increase the size of its
crystals and reduce their defects

• The heat causes the atoms to become unstuck from their 
initial positions (a local minimum of the internal energy) 
and wander randomly through states of higher energy.

• The slow cooling gives them more chances of finding 
configurations with lower internal energy than the initial 
one. 

Simulated annealing (SA)
• SA exploits the analogy between how metal cools and 

freezes into a minimum-energy crystalline structure and 
the search for a minimum (or maximum) in a general 
system. 

• SA can avoid becoming trapped at local minima
• SA uses a random search that accepts changes that 

increase objective function f, as well as some that 
decrease it

• SA uses a control parameter T, which by analogy with 
the original application is known as the system 
“temperature”

• T starts out high and gradually decreases toward 0

Simulated annealing

• A “bad” move from A to B is accepted with a 
probability

-(f(B)-f(A)/T)
e

• The higher the temperature, the more likely it is 
that a bad move can be made.

• As T tends to zero, this probability tends to zero, 
and SA becomes more like hill climbing

• If T is lowered slowly enough, SA is complete and 
admissible. 

Simulated annealing algorithm 
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Local beam search

• Basic idea
– Begin with k random states
– Generate all successors of these states
– Keep the k best states generated by them

• Provides a simple, efficient way to share some 
knowledge across a set of searches

• Stochastic beam search is a variation on this
– Probability of keeping a state is a function of its 

heuristic value

Genetic algorithms
• Similar to stochastic beam search
• Start with k random states (the initial population)
• New states are generated by “mutating” a single 

state or “reproducing” (combining) two parent 
states (selected according to their fitness)

• Encoding used for the “genome” of an individual 
strongly affects the behavior of the search

• Genetic algorithms / genetic programming are a 
large and active area of research

Tabu search

• Problem:  Hill climbing can get stuck on 
local maxima

• Solution:  Maintain a list of k previously 
visited states, and prevent the search from 
revisiting them

CLASS EXERCISE

• What would a local search approach to solving a Sudoku
problem look like?

2

3

1

3
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Online search
• Interleave computation & action (search some, act 

some)
• Exploration: Can’t infer outcomes of actions; must 

actually perform them to learn what will happen
• Competitive ratio: Path cost found/ Path cost that 

would be found if the agent knew the nature of the 
space, and could use offline search

* On average, or in an adversarial scenario (worst case)
• Relatively easy if actions are reversible (ONLINE-DFS-

AGENT)
• LRTA* (Learning Real-Time A*): Update h(s) (in 

state table) based on experience
• More about these in chapters on Logic and Learning!

Summary: Informed search
• Best-first search is general search where the minimum-cost nodes (according 

to some measure) are expanded first. 
• Greedy search uses minimal estimated cost h(n) to the goal state as measure. 

This reduces the search time, but the algorithm is neither complete nor optimal. 
• A* search combines uniform-cost search and greedy search: f(n) = g(n) + h(n). 

A* handles state repetitions and h(n) never overestimates. 
– A* is complete and optimal, but space complexity is high.
– The time complexity depends on the quality of the heuristic function. 
– IDA* and SMA* reduce the memory requirements of A*. 

• Hill-climbing algorithms keep only a single state in memory, but can get stuck 
on local optima. 

• Simulated annealing escapes local optima, and is complete and optimal given 
a “long enough” cooling schedule. 

• Genetic algorithms can search a large space by modeling biological evolution.
• Online search algorithms are useful in state spaces with partial/no information.


