Proelog

University: off Maryland
Baltimore County.

9/19/01

Facts, rules, and gueries

Fact: SocratesiIs a man.
man(socrates).

Rule: Alllmen are mortal.
mortal(X) - man(X).

Query: Is Secrates mortal?
mortal(socrates).

Syllogisms

“Prelog” is all abeut « (-gramming in
IC.

= Socrates Is a man.
s Alllmen; are mortal.
= [herefore, Socrates Iss mortal.

Running Prolog; |

Create your “datalkhase™ (program) in
any. editor.

Save It as text only, withra .pl
extension

Here's the complete “program™:

man(socrates).
mortal(X) :- man(X).

Running Prolog Il

Prelog IS completely iateractve.

Begin by invoking the Prelog interpreter.
SICStUS

Tihen load your pregram.
consult(‘mortal-pl’)

Then, ask yeur guestion at the prompt:
mortal(socraties).

Proleg responds:

Yes

Syntax Ii: Structures

Example structures:

= sunshine

= man(socrates)

= path(garden, south, sundial)

<structure> ::=

<name> | <name> (<arguments>)
<argumentis> ii=

<argument> || <argument> , <arguments>

[finin@linux3 prolog]$
mortal.pl On gl.umbc.edu

[finin@linux3 proleg]$

Welcome to SWI-Prolog (Multi-threaded;, Version 5.6.18)
For help;, use ?2- help(Topic). or ?- apropes(\Word).

?-

%) mortal.plicompiled 0:00 sec, 692 bytes

Yes

Syntax Il: Base Clauses

Example base: clauses:
= debug_on.

= [oves(john, mary).

= loves(mary, bill).

<base clause> :i= <structure> .

Syntax I1l: Nonbase Clauses

Example nonbase clauses:
= mortal(X) - man(X).
= mortal(X) ;- woman(X)

= happy(X) - healthy(X), wealthy(X), wise(X).

<nonbase; clause> ii=
<siirUciures = <structures>.

<structures> =
<structure> | <structuress , <structures

Syntax V: Programs

A program Is a collection| of predicates.
Predicates can be in any: erder.

Predicates are used in the order in which
they occur.

Syntax IV: Predicates

A predicate is a collection| of clauses with
the same functor and! anty.

loves(john, mary).

loves(mary, bill).

loves(chuck, X)i= female(X), rich(’X).
<predicate> ii=

<clause> | <predicatie> <clause>
<clause> =

<base clause> | <nonbase clause>

Syntax VI: Assorted details

Variables begin withra capitall letter:
X, Socrates, _result

Atoms do net begin with' a capitallletter:
X, socrates

Other atems must be enclesed in single
guotes:

= 'Socrates’

= ‘C:/My Documents/examples.pl’

Syntax VII: Assorted details Backtracking

loves(chuck, X) = female(X), rich(X).
In a gueted atom,, a single guoete must be female(jane).
guoted or backslashed: “Can t, or female(mary).

J —>I
Bonate rich(mary.).

/* Comments are like this */ f
- Suppose we ask. loves(chuck, X).
Prelog allows seme infix operaters, such

as ;- (turnstile) andl, (comma). These are female(X) = female(jane), X = jane:
syntactic sugar for the functors ‘= “and rich(jane) fails.
female(X) = female(mary), X.= mary:

Example: rich(mary) succeeds.
‘= (mortal(X), man(X)).

Additional answers Common problems

female(jane). Capitalization| is| extremely/ important!
female(mar'y). u| Capitalized symhpls are variables!
female(susan). No space between a functor and its argument

2. female(X). I

man(socrates), /10t man (socraties).

X = jane Don't forget the period! (But youlcan put it on
X = mary the next line.)

Yes

Prolog Execution Moedel/Prolog Debugger Execution Model (conjunctions)

parent(james, john)
parent(florence, JOhB(IT pRACREIGIBIRICTRIR))

g %

FAIL R parent(james, john). female(emily).
arent(james, john). parent(james, alan). female(florence).
P (J J) parent(florence, john). female(elizabeth).

Goal = parent(P, john)

parent(james, ala}n). parent(florence, alan).
parent(florence, john). parent(alan, elizabeth).
parent(florence, alan). parent(alan, emily).
parent(alan, elizabeth).

parent(alan, emily).

Readings Logic is Menotonic

loves(chuck, X) :- female(X), rich(X). Classical logic, anyway.
Declarative reading: Chuck loyves X iff X Is female Monotonic ~= never gets smaller
andfrich:

Appreximate proceduralireading: 1o find an X

that Chuck leves; first find a female X, then 5 = ; _
check that X is rich. li-something is true, it’s triue for all time

u 3>2 always was and alwaysiwill e true

I legic, a thing' s true: ox false.
m 3>2 is true

Declarnative: readingssare almost always
preferred. us, president(‘George W. Bush’) 2

Ty to write Prolog| predicates) se that the loves(‘Tom Cruse’, ‘Katie Holms") 2
precedurall andf natural declarative ieading give
the same answers.

Nen-Monoetenic Logic

A nen-menetonic legic is one in whichi a
proposition’s true value can change. in
time

Learning a new: fact may: cause the
AUMBEr off true Propositions to decrease.
Prelog IS nemn-menetenic for two reasens:
= Youl can assert and retract clauses

s Prolog| Uses “negation: asi failure”

Negation as failure

NO isibasic to logic
Hoew: caniwe! proyve that something'is false?
Pure prelog only suppolits positive: proofs

Handling negation'is much more difficult

u Quickly leads to undecidability

Yet...

725 man(tom):

No

IRl Preleg, we often use aur inability/ te: prove P.
to be a prove: that P isifalse.

This| Is the semantics databases assume:

Assert and Retract

Noermally: we assert and retract facts (i.e., hase clauses)
massert(loves(tom,nicole)).

aretract(loves(tom,nicele)).

massert(loves(tom,katie)):

aretract(loves(tom; X))

sretractall(loves(tom,X)):

Youl can| assert/retract any: clause

massert(loves(X,Y) :- spouse(X,Y)).

Static vs. dynamic predicates

not Is Proleg’s NAF eperator

Birds can fly, except for penguins:

canEly OO = bird(0X);, net(penguin(x))-

bird(eagle). bird(Wwren). bird(penguin). bird(Emu):
Birds: canifly, Unless we knew: them! to) e
flightless

cankly(X) :- bird(X);, net(cantEly(x)):
cantEly(penguiny). cantEly(emu):

Wihat dees; this mean?

not(bird(’x))

The ‘standard not operator s \+.

A Simple Proleg Model Nomenclature and Syntax

Imagine preleg asia system which hasia database A prolog rule is called a clause.
composed! of two compenents: ¥
s EACTS - statements about triue relations whichr held between A clause has a head' a neck and a bOdy'
panticular objects in the world. For example: -
parent(adam,able): adam is a parent of able
parent(eve,able): eve is a parent of able

Gl S, the IS & rule'siconclusion.
s RULES, - statements about true relations which holdibetween h ' e’ ! diti
objects in the world whichi contain generalizations, The IS a rule’s, premise or condition.
expressed through the use of variables. Eor exampley the note:
rule ?
father(X,Y), - parent(X,Y), male(X). s read ;- as IF
might express: = read , as AND

for any X and any Y, X is the father of Y if X is a parent of Y and = a . marks the end of input
X Is male. ’

fieck

Prolog Database The terms extensional and ~ Exten ional vs. Inten ional
intensional are borrowed from

the language philosophers use Prolog
for epistemology. Database

refers to whatever extends, i.e., parent(adam,able)

“is quantifiable in space as well as in arent(adam,cain acts comprising the
parent(adam’able) time”. Enale(a(dam)) extensional database”

parent(adam,cain) FaCtS CompriSi ng the is an antonym of extension,
male(adam) “extensional database" referring to “that class of existence which

may be quantifiable in time but not in LRSS EIL S AT Rules comprising the

space.” WEECSE intensional database”
¢ 1 1 : sibling(X,Y) :- ... SERichatdanbass
» NOT inten ional with a “ ”, which has to

do with “will, volition, desire, plan, ...”

father(X,Y) :- parent(X,Y), L7 For KBs and DBs we use
le(X Rules comprising the i . — .
male(X). to refer to that which is Epistemology is ““a branch of philosophy

Slbllng(X,Y) . “intensional database” explicitly represented (e.g., a fact), and that investigates the origin, nature,

to refer to that which is methods, and limits of knowledge”
represented abstractly, e.g., by a rule of

inference.

A Simple Prolog Session | - [user]. A Prolog Session

| - | female(eve).
i : | 2= mother(eve,Who).
assent(parent(adam,able)) || 2- parent(X,able). | parent(adam,galn). b i
; A | parent(eve,cain): 7
)|/e')s A ’ | f%tahreern(z((v;)Y)- male(X) | 2- trace, mother(Who,cain).
7= : A - (2) 1 Call: mother(_0,cain) 2
assert(parent(eve,able)). no | mother(X,Y) = @) 2 call: parent(_0,cain) 2
VES | 2= parent(X;able) parent(X,Y), female(X): @)2 Exit: parent(adam),cain)
I ?- assert(ma|e(adam))_ male(X) | AZUser consulted 356 (4) 2. Callz female(adam) ?
bytes 0.0666673 sec. (@) 2 Fail: female(adam)
12 t(ad ble) yes (8) 2 Back to: parent(_0,cain) ?
7= parent(adam,anie). no ’ (8) 2 Exit: parent(eve,cain)
7= moether(Whe,cain). ;
yes I { (5) 2. call: female(eve) ?
| 7= parent(adam,X): Who = eve (5) 2 Exit: tfemale(eve)
X = able yes (2) 1 BExit: mother(eve,cain)
£y Who = eve
Y yes

Vs X = adam ;

How to Satisty a Goal

|| 2= [user].

| sibling(X,Y) :-

|| fathen(Pa,X),

|| fathen(Pa,Y);

| moether(Via, X)),)

| mother(Ma,Y), a (n if G = P,Q thentfirst satisfy P, carny any variable
| not(X=Y). e ok bindings forward te @) and then! satiety @.

Zuser consulted 152 bytes § - = : :
ENOS00008! <t b n Isfa%isfy%Q then satisfy’ P. [that fails; then try/ to

Teos sibling(%,Y) u (i G = not(P) then try te satisty/ P. [this)succeeds,
) o ds then fail'and! if it fails, then succeed.

X = able
u (i G is a simple goal, thenilook for a fact in the DB

Y = cain ;
X = cain that unifies with' G lock for a rulewhese conclusion

Y = able ; ’ « unifies with' G and try te) satisfy! itsibody,

Here isian infermal description of how: Proleg|satisfies a
goal (like father(adam,X)): Suppese thergeal is G:

Noite

two) basic conditions, ane: true, which; alwaysisuceceeds,
and'faill, whichralways fails:

A comma () represents conjunction (i.€. and):

A semi-colon represents; disjunction (i.e- or), as: in:
grandParent(X,Y)r:- grandkathen(X;Y); grandMother(X,Y):
there isihoi real distinction between RULES and FACTS.
A EACTI is just a rulerwhese bedy is the trivial condition

true. Mhat Is) parertadanm,caim) endl parent(adan)can)
J= true, are equivalent

Goals caniusually’be pesed withrany: ofi several
combination ef Vaniables and constants:

u parent(cain,able) - is Cainr Able’s parent?

= parent(cain,X) - Whoiisia child ofi Cain?

u parent(X,cain) - Whoiis Cainia child of?

s~parent(X,Y) - What twoi people have a parent/child relationship?

Compound! Terms

A compound termi canl be thought of asia relation
Petween one or more terms:

u part. ofi(finger,hand)
andisiwirittenras:

1. the relation name (prncip/el fvnetorn) Which
mUSE be &l constant.

2, ANl OPEN| parenthesis Term arity

2 The arguments - 6ne or more f 0
terms, separated by commas: f(a) 1

4 A closing parenthesis: f(a,b) 2

The number of arguments of a f(g(a),b) 2
compound terms Is callediits arity:- .

Proleg Terms

Tihe term is the basic data structure in Prolog.
Tihe term is to) Prolog what the s-expression isite Lisp.
A term is either:
& constant
john , 13, 3.1415, +, 'a constant’
= a variable
X, Var, _, foo
u & compoeund term
part(arm,sody)
part(arm(john), body(jehn))
The reader and printer SUpport operators:
s - Xisread as ='(X).
m 5 + 2 s read as ‘+'(5,2).
s a:-hb,c,d. readlas :-'(a (b, (c;d)))-

The Notion of Unification

Unification Isiwhen two things; “hecome

one
Unification is kind off like assignment
Unification is, kind of like eguality: in algebra
Unification Is, mostly like pattern matching

Example:
= |loves(john, X) unifies withiloves(johh, mary)
= and in the process, X gets unified with mary

Unification |

Any value canilbe unified with rtself.

= weather(sunny) = weather(sunny)

A variable can e unifiedwith anether
variable.

m X = Y

A variable can be unified with
(*instantiated! to*) any: Prelog term.

= Topic = weather(sunny)

Explicit Unification

The explicit unification; operator is =
Unification Is symmetric:

Cain = father(adam)
means, the same as

father(adam) = Cain

Most unification happens implicitly, as a

result off parameter; transmission.

n E 0L, Prolog trys to prove: elder (X, hoh) by

unifying it withr the fact elder(zeus;).

Unification Il

Two different structures can be unified if
their constituents can be unified.
= mother(mary, X) = mother(Y, father(z))

In Proloeg), a variable can be' unified with' a
structure containing that same variable.

This is usually:a Bad Idea.

Unifying X and f(X)r binds X to a circular
structure whichi Prelog can not print.
s X = F(F(FF(FC.

Scope of Names

The scope! of a variableris the single clause in
WhIChIt appears.

The scoper of the “ancnymous: (“don‘t cane™)
variable (eg _ or _foo) isiitself.
= loves(_,)= loves(john, mary)

Avariable that enly eceurs once! infa clause s a

useless: sjngleton; replace it withran

aneRymoeus;variable:

s Most Prologlinterpreters willissue warnings i you
have rules with' singleton: variables

u sFather(X) - male(X), parent(X,_child).

10

Wiriting Prelog Pregrams

Suppose the database contains
loves(chuck, X) = female(X), rich(X):
female(jane):

andwe ask who Chuck loves,

2" |oves(chuck, Woman).
female(X)) finds a value for X, say, jane

rich(X) then tests whether Jane! is rich

Ordering

Clausesi are always tried in order
buy(X) = good(X).

buy(X) = cheap(X).
cheap('Java 2 Complete).
good(‘Thinking ini Jiava’).

What'will" buy(X) choose!first?

Clauses as Cases

A predicater consists of multipler clauses Whese
fhieads have the same' principlefiunctor and arity.

Each clause represents a “case”.
grandfather(X,Y) :- father(X,2), father(Z,Y).
grandfather(X,Y) :- father(X,Z), mother(Z,Y).
abs(X, Y) ;- X <0, Yis -X.

abs(X, X) :- X >= 0.

Clausesiwith headsyhaving| dififierent airty, are

unrelated;
a Like'methods inf OO languages

Ordering Il

Tiry terhandlermore specific cases (those having
more varables instantiated) first.

dislikes(john, bill).
dislikes(john, X) :- rich(X).
dislikes(X, Y) :- loves(X, Z), loves(Z, Y).

11

Ordering 111

Some “actions” cannot be undene by
packtracking over them:
= write, nl, assert, retract, consult:
Do tests before you do undoable actions:
= take(A) -
at(A, in_hand),
write(You\ re already holding itl"),
nl.

Facts and Rules

Designing, a Preleg knewledge: hase: usually’ starts
withrdeciding whichipredicatesiwill'lyer provided as
facts and whichrwillf e defined by rules:
parent(Adam,cain).

child(X,Y) :- parent(Y,X).

We don't have: te werry abeut this in legic andiin
some logic programming languages:

parent(X,Y) < child(Y,X)

Off course; It's common for a predicate to be
defined wsing both facts and' rules;

n Examples int(0). int(suc(X)) :- Int(x).

s What's at issue isireally aveidingl nen-terminating

reasoning.

Recursion

Prolog makes; aveiding infinite recursion; the
programmer’s; responsibility:

BUt it always tries clauses in order and processes
conditions inf a clause firom left to rHght.

S0, handle thie base casesifilst, recur enly with: a
simpler: case; Use right recursion.

ancestor(P1,P2) :- parent(P1,P2).

ancestor(P1,P2) :- parent(P1,X), ancestor(X,P2).

But net:

ancestor(P1,P2) :- parent(P1,P2).

ancestor(P1,P2) :- ancestor(P1,X), parent(X,P2).

Choosing predicates

Designing a set off predicates
(anrentelegy) riequires, knewledge of
therdomain; and hew: the representation
willf e used.

Example: representing an 6hject’si color.
= green(kermit)

= color(kermit,green)

= value(kermit,color,green)

= attribute(kermit,color,value,green)
Which of these! is best?

12

green(kermit)

ISSUGS in ChOOSing color(kermit,green)
p red icates value(kermit,color,green)

attribute(kermit,color,value,gree

Cut and Cut-fail

Whati queries can' be’ asked? The cut, I, Is a commit poeint. It commits te:

=A principle fiuinctior caninott be alvariable, e.g., canit do;
Relation(john,mary)
=\Which caniwe' use to answer:
Is kermit green?
What: color is Kermit?
What do we know!abouff: Kermit?:
What is the range ofi the color aftributie?

How, efficient is' refrieval of' facts and rules.
sl.et a termis signatiure beiifs principle functor and arity.
sProlog indexes: alfact or rule head on ifis signaiiure and the

signature of ifsifirst argument:
= This is done for efficiency.

Arithmetic: Built-In is/2

Arithmetic expressions;anen’t normally evaluated i
Prolog.
BUilt=Inl/afix: operatoris/2 evaluates it's 279 argument,
and unifies the result withit's; 1t argument.

| 2-X=5+2.

X =5+2?

yes

| - Xis5+ 2.

=

yes
Anyivariables infthe right=hand side of is/2 must e
instantiated whenfit'is evaluated:

More on this later

u the clause in which'it occurs (can't try another)
= everything up to that point in the clause
Example:
= |oves(chuck, X) i- female(X), !, rich(X).
s Chuck loves the firstfemale in the database, but only if she is
richs

Cut=fail, (!, fail), means give upi 7ow.and donit even) try
oy another selution:
More en| this [ater

What youlcan't do

There are ne functions; only’ predicates

Prelogis pregramming| inflegic; therefore there
are fiew! controlf structures

TIhere are nerassignment statements; the starte
ofi the: pregrami isiwhat's inl therdatabase

Workarounds Il Fail Loops

There are few: control structures; ini Prolog, BUI... noTice_objecTs_a’r(Place) .

You don‘t need |E because youl caniuse multiple at(X, Place),

write(' There isa '), write(X),
write(' here.'), nl,
fail.

notice_objects_at().

clauses with “tests™ in them

You seldom need leeps; hecause you have
recursion

You can), iffnecessany, constriuct a “fail loop*

Use fiail loops spaningly; ifiat all.

Workarounds Il Workarounds I1

Eunctions;are a subset ofi relations, seryoeulcan define

There are no functions, only: predicates;
BUT...

A call'te a predicate caninstantiate
variables: female(X) can either

s look for a value for X that satisfies female(X),

or.

u i X already: has a value, test: whether
female(X) can be proved true

By convention, output variables come last

m Sguare(N;N2) :- N2 is N*N.

a function like factorial asia relation
factorial(N,0) :- N«1.
factorial(1,1).
factorial(N,M) :-
N2 is N-1,
factorial(N2,M2),
M is N*M2.
The last argument: to) the relation isfused for the valle
that the function| retunns.

How wouldioeurdefine:

fib(n)=fib(n-1)+fib(n-2) where fib(0)=0 and
fib(1)=1

14

Workarounds 111

There are nejassignment: statements, BUTE...

the Proelogldatabaser keeps track ofi program state

pUmMp__colnt =
refiract(count (X)),
YisX+1,
asserti(counti(¥)):

Donft get canried away and misuse this!

Linked Lists

Prelogl allews a special syntax for: lists:

m [a;b,c] s a list of 3 elements

u [istasspecialfatomiindicatinga list with 0 elements
Internmally;, Preleg lists are regularn Preleg terms
withi the functor “." (se' called “doetted pairs’)
[a,b,c] =""(a, ".'(b, .'(c, []))-

The symboll | in a list indicates) “rest of list”, or
the term that is a dotted pair’s 274 argument.
[la;b,cll = [a][ibsel]-

[Head|Taillfisia commoen expression: for dividing
a list intoe its 1st element (IHead) andi the: rest of
the list (Tail).

Lists in Prolog

Prelog has a simple universal data
structure, the term, out of Which others
are built.

Prelog lists ane important because
n Tlhey are usefiulfin practice

u [lhey: offer goodl examples, ofi writing standand
recursive predicates

a [Ihey show how: alittle’syntactic sugar hielps

Example: list/1

% list(?List) succeeds if its arg is a well formed list.

list([1).
list([_Head| Tail]):-
list(Tail).
Since Proleg is Untyped), we dont have to kKnew,
anything about Head except that it'is a term.

Thetlist canl ave terms of any tyjpe
[1, foo, X, [sub, list], 3.14]

15

Example: member/2

75 member(PElement, 2List) is tirue ifif Element: isia

7> top-level member of: the list List.

member(Element, [Element|_Tail]).

member(Element, [_Head| Tail]):- member(Element, Tail).

This is a standard recursive definition of member:

(1) If the list has some elements, is what we're
looking for the first one?

(2) If the list has some elements, is what we're
looking for in the rest of the list?

(3) The answer is no.

Using member to test list elements

Doesi a list' L have: a negativer aumber in it?
n member(X,L), number(N), N<0.
Are all' of the' elementsi off L numbers between 1
and 1072
et member(GL),
net(number(X) ; X<1 ; X>=10))

Member has several uses

% member(+,+) checks:
% membership.

| 2- member(b;[a,5;cl).
yes
| 2- member(x;[a,c])-
no

% member(-,+) generates
% members.

| 2= member(X,[a,b;cl)-
K=72 20

W= 0E

X=¢c75

no

| 2- member(X,[a,b,c,1,d,e,2]),

integer(X).
X=1?;
X=27?;
no

% member(+,-) generates lists.
| 2- member(a,L).

L=[al_AT?;

L=[Aa]l_B]?;

L=[A, _Bal.C]?

yes

% member(-,-) generates lists.
| 2- member(X,L).

L=[X_A]?;

L=[LAX]_B]?;
L=[A,_BX|_C]?

yes

7=

Example: delete/3

%) delete(+Element, +List, -NewList)

% delete/3isucceeds iff NewlList results from
Y% remoVving one eccurrence ofi Element: firomy List.

delete(Element, [Element|Tail], Tail).
delete(Element, [Head| Tail], [Head|NewTail]):-
delete(Element, Tail, NewTail).

16

Example: append/3

Y% append(ZListd; 7List2, 7List3)

Y% append/3isucceeds if List3i contains all the

Y% elements of Listd, follewed by all the elements
% of List2.

append([], List2, List2).
append([Head|List1], List2, [Head|List3]):-
append(List1, List2, List3).

Example: sublist/3

Y% sublist(?SubList, +List). Note: The 15t append
Y% finds; a beginning peint for the: sublist and the
% 2" append finds an end point
sublist(SubList, List):-
append(_List1, List2, List),
append(SubList, _List3, List2).
% examples sublist([8i41, 11, 2,8,4,5,61)

sublist
—

listl

[1]2[3[4[5]6]

Append Is amazing

% append(+,+,+) checks

I ?- append([1,2],[a,b],[1,2,a,X]).-

no

% append(+,+,-) concatenates
| ?- append([1,2],[a,b],L).
L=1[1,2,ab]?

yes

% append(+,-,+) removes prefix.

| ?- append([1,2],L,[1,2,a,b]).
L =[ab] ?
yes

% append(-,+,+) removes suffix.

| ?- append(X,[a,b],[1,2,a,b]).
x=11,2] 2
yes

% append(-,-,+) generates all
% ways to split a list into a
% prefix and suffix.

| ?- append(X,Y,[1,2,a,b]).
X=1l,
Y =[1,2,a,b] ?;

X =[],
Y =[2,ab]?;

X = [1,2],
Y = [a,bl?;

X=1[1,2,a],
Y =[b]?;

X = [1,2,a,b],
=107
no

Example: sublist/3 (cont)

% hene's anether way/: to, write' sublist/2

sublist1(SubList, List):-

append(Listl, _List2, List),
append(_List3, SubList, List1).

17

Example: “naive” reverse

%) nreverse(?List, ?ReversedList) is true ifif the
Y% result of reversinglthe top-level elements of
9% list: List Is;egual to ReversedList.

nreverse([], []).
nreverse([Head| Tail], ReversedList):-
nreverse(Tail, ReversedTail),

append(ReversedTail, [Head], ReversedList).

this is simple but inefficient
m |t's not tail recursive
s Append isiconstantly’ copying and recopying lists

it's a traditional benchmark for Prolog.

reverse and nreverse

| ?- trace. | ?- reverse([1,2,3].L).

{The debugger will .. everything (trace)} C 1 Call: reverse([1,2,3],_204) ?

yes 2 2 Call: reverse1([1,2,3].[]._204) ?

["'eversfg:[;lfﬁgéb)e.rse([l A 3 3 Call: reverse1([2,3],[1],_204) ?

P Cali: nreverse([zl.é],ﬁlz) ,_,' 4 4 Call: reversel1([3],[2,1],_204) ?

3 Call: nreverse([3],_1122) ? 5 5 Call: reverse1([],[3
4 Call: nreverse([],_1531) ? 5 5 Exit: reversel([].[3.

4 Exit: nreverse([1.[) ? 4 4 Exit: reverse1([3]

4 Call: append([].[3]._1122) ? 3 3 Exit: reversel([2,
4 Exit: append([],[3].[3]) ?

3 Exit: nreverse([3],[3]) ? o

3 Call: append([3],[2],_712) ? 1
4 Call: append([].[2],_3800) ?
4 Exit: append([].[2].[2]) ? =32

3 Exit: append([3].[2].[3.2]) ?

2 Exit: nreverse([2,3],[3.2]) ?

2 Call: append([3,2],[1],_204) 2
3 Call: append([2],[1]._5679) ?
4 Call: append([],[1],_6083) ?
4 Exit: append([],[1],[1]) ?

3 Exit: append([2].[1].[2.1]) ? . -

2 Bxit: append((3.21,[11,[3,211) ? Note: calling trace/0

1 Exit: nreverse([1,2,3],[3,2,1]) ?

o turns on tracing. Calling
notrace/0 turns it off.

2 Exit: reverse1([1,2. 3,2,1]) ?
1 Exit: reverse([1,2,3],[3,2,1]) ?

yes

P00 BE0ONONNO WG ®N R

Example: efficient reverse/3

9%, reverse(FList, -ReversedList)) isia “tail recursive’
% version| of reverse.

reverse(List, ReversedList) :-
reversel(List, [], ReversedList).

reversel([], ReversedList, ReversedList).
reversel([Head| Tail], PartialList, ReversedList):-

reversel(Tail, [Head|PartialList], ReversedList).

Finding Paths

adj(1,2). adj(1,3).
adj(2,3). adj(2,2).
adj(3,4). adj(5,6).

adjacent(N1,N2) :- adj(NL,N2).
adjacent(NL,N2) :- adj(N2,NL).

connected(From,To) :-
go(From,To,[From]).
1 1S CONNECTED TO 2,3,4
go(From,To,Passed) :-
adjacent(From,To),

not(member(To,Passed)).

go(From;To,Passed)) :-
adjacent(From,Next),
not(member(Next,Passed)),
go(Next, To,[Next|Passed]).

18

“Pure Prolog” and non-logical built-ins

Allfthe examplesiso far have beemn “pure Proleg”

= Contain no built-ins with nen-legical side-effects

Prelegrhas many bullt=in' predicatess that have suchiside-
effects:

s Type checking of terms

= Arithmetic

= Control execution

= [nput and output

= Modify the program during execution (assert, retract, etc.)

= Perfonm agoregation operations

Use off non-logical built=in predicatesiusually effects the
reversability of' your program.

The End

19

