
1

9/19/019/19/01
11

PrologProlog
Tim FininTim Finin

University of Maryland University of Maryland
Baltimore CountyBaltimore County

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 22

SyllogismsSyllogisms

“Prolog” is all about “Prolog” is all about proprogramming in gramming in
loglogic.ic.

Socrates is a man.Socrates is a man.
All men are mortal.All men are mortal.
Therefore, Socrates is mortal.Therefore, Socrates is mortal.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 33

Facts, rules, and queriesFacts, rules, and queries

Fact: Socrates is a man.Fact: Socrates is a man.
man(socrates).man(socrates).

Rule: All men are mortal.Rule: All men are mortal.
mortal(X) :mortal(X) :-- man(X).man(X).

Query: Is Socrates mortal?Query: Is Socrates mortal?
mortal(socrates).mortal(socrates).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 44

Running Prolog IRunning Prolog I

Create your "database" (program) in Create your "database" (program) in
any editorany editor
Save it as Save it as text only,text only, with a with a .pl.pl
extensionextension
Here's the complete "program":Here's the complete "program":

man(socrates).
mortal(X) :- man(X).

2

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 55

Running Prolog IIRunning Prolog II

Prolog is Prolog is completely interactive.completely interactive.
Begin by invoking the Prolog interpreter.Begin by invoking the Prolog interpreter.
sicstussicstus
Then load your program.Then load your program.
consult(‘mortal.pl’)consult(‘mortal.pl’)
Then, ask your question at the prompt:Then, ask your question at the prompt:
mortal(socrates).mortal(socrates).
Prolog responds:Prolog responds:
YesYes

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 66

On gl.umbc.eduOn gl.umbc.edu
[finin@linux3 prolog]$ [finin@linux3 prolog]$ lsls
mortal.plmortal.pl
[finin@linux3 prolog]$ [finin@linux3 prolog]$ plpl
Welcome to SWIWelcome to SWI--Prolog (MultiProlog (Multi--threaded, Version 5.6.18)threaded, Version 5.6.18)
……
For help, use ?For help, use ?-- help(Topichelp(Topic). or ?). or ?-- apropos(Wordapropos(Word).).

??-- consult('mortal.plconsult('mortal.pl').').
% % mortal.plmortal.pl compiled 0.00 sec, 692 bytescompiled 0.00 sec, 692 bytes
YesYes
??-- mortal(socratesmortal(socrates).).
YesYes
??-- mortal(Xmortal(X).).
X = X = socratessocrates
YesYes
??--

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 77

Syntax I: StructuresSyntax I: Structures

Example structures:Example structures:
sunshinesunshine
man(socrates)man(socrates)
path(garden, south, sundial)path(garden, south, sundial)

<structure> ::=<structure> ::=
<name> | <name> (<arguments>)<name> | <name> (<arguments>)

<arguments> ::=<arguments> ::=
<argument> | <argument> , <arguments><argument> | <argument> , <arguments>

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 88

Syntax II: Base ClausesSyntax II: Base Clauses

Example base clauses:Example base clauses:
debug_on.debug_on.
loves(john, mary).loves(john, mary).
loves(mary, bill).loves(mary, bill).

<base clause> ::= <structure> .<base clause> ::= <structure> .

3

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 99

Syntax III: Nonbase ClausesSyntax III: Nonbase Clauses

Example nonbase clauses:Example nonbase clauses:
mortal(X) :mortal(X) :-- man(X).man(X).
mortal(X) :mortal(X) :-- woman(X)woman(X)
happy(X) :happy(X) :-- healthy(X), wealthy(X), wise(X).healthy(X), wealthy(X), wise(X).

<nonbase clause> ::=<nonbase clause> ::=
<structure> :<structure> :-- <structures> .<structures> .

<structures> ::=<structures> ::=
<structure> | <structures> , <structure><structure> | <structures> , <structure>

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1010

Syntax IV: PredicatesSyntax IV: Predicates

A predicate is a collection of clauses with A predicate is a collection of clauses with
the same the same functorfunctor and and arityarity..

loves(john, mary).loves(john, mary).
loves(mary, bill).loves(mary, bill).
loves(chuck, X) :loves(chuck, X) :-- female(X), rich(X).female(X), rich(X).

<predicate> ::=<predicate> ::=
<clause> | <predicate> <clause><clause> | <predicate> <clause>

<clause> ::=<clause> ::=
<base clause> | <nonbase clause><base clause> | <nonbase clause>

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1111

Syntax V: ProgramsSyntax V: Programs

A A programprogram is a collection of predicates.is a collection of predicates.
Predicates can be in any order.Predicates can be in any order.
Predicates are used in the order in which Predicates are used in the order in which
they occur.they occur.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1212

Syntax VI: Assorted detailsSyntax VI: Assorted details

Variables begin with a capital letter:Variables begin with a capital letter:
X, Socrates, _resultX, Socrates, _result

Atoms do not begin with a capital letter:Atoms do not begin with a capital letter:
x, socratesx, socrates

Other atoms must be enclosed in single Other atoms must be enclosed in single
quotes:quotes:

‘Socrates’‘Socrates’
‘C:/My Documents/examples.pl’‘C:/My Documents/examples.pl’

4

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1313

Syntax VII: Assorted detailsSyntax VII: Assorted details

In a quoted atom, a single quote must be In a quoted atom, a single quote must be
quoted or backslashed: quoted or backslashed: 'Can''t, or 'Can''t, or
wonwon\\'t?''t?'
/* Comments are like this *//* Comments are like this */
Prolog allows some infix operators, such Prolog allows some infix operators, such
as :as :-- (turnstile) and , (comma). These are (turnstile) and , (comma). These are
syntactic sugar for the functors syntactic sugar for the functors ':':-- ''and and
','','..
Example:Example:

':':-- '(mortal(X), man(X)).'(mortal(X), man(X)).
UMBCUMBC

an Honors University in Marylandan Honors University in Maryland 1414

BacktrackingBacktracking

loves(chuck, X) :loves(chuck, X) :-- female(X), rich(X).female(X), rich(X).
female(jane).female(jane).
female(mary).female(mary).
rich(mary).rich(mary).
-------------------- Suppose we ask:Suppose we ask: loves(chuck, X).loves(chuck, X).
female(X) = female(jane), X = jane.female(X) = female(jane), X = jane.
rich(jane) rich(jane) fails.fails.
female(X) = female(mary), X = mary.female(X) = female(mary), X = mary.
rich(mary) rich(mary) succeeds.succeeds.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1515

Additional answersAdditional answers

female(jane).female(jane).
female(mary).female(mary).
female(susan).female(susan).
??-- female(X).female(X).
X = jane ;X = jane ;
X = maryX = mary
YesYes

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1616

Common problemsCommon problems

Capitalization is Capitalization is extremelyextremely important!important!
Capitalized symbols are variables!Capitalized symbols are variables!

No space between a functor and its argument No space between a functor and its argument
list:list:

man(socrates),man(socrates), notnot man (socrates).man (socrates).
Don’t forget the period! (But you can put it on Don’t forget the period! (But you can put it on
the next line.)the next line.)

5

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1717

Prolog Execution Model/Prolog DebuggerProlog Execution Model/Prolog Debugger

CALL EXIT

FAIL REDO
parent(james, john).
parent(james, alan).
parent(florence, john).
parent(florence, alan).
parent(alan, elizabeth).
parent(alan, emily).

Goal = parent(P, john)
parent(james, john)

parent(florence, john)

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1818

Execution Model (conjunctions)Execution Model (conjunctions)

parent(james, john).
parent(james, alan).
parent(florence, john).
parent(florence, alan).
parent(alan, elizabeth).
parent(alan, emily).

female(emily).
female(florence).
female(elizabeth).

parent(Mother, john) female(Mother)parent(james, john) female(james)parent(florence, john) female(florence)

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1919

ReadingsReadings

loves(chuck, X) :loves(chuck, X) :-- female(X), rich(X).female(X), rich(X).
Declarative reading: Chuck loves X if X is female Declarative reading: Chuck loves X if X is female
and rich.and rich.
Approximate procedural reading: To find an X Approximate procedural reading: To find an X
that Chuck loves, first find a female X, then that Chuck loves, first find a female X, then
check that X is rich.check that X is rich.
Declarative readings are almost always Declarative readings are almost always
preferred.preferred.
Try to write Prolog predicates so that the Try to write Prolog predicates so that the
procedural and natural declarative reading give procedural and natural declarative reading give
the same answers.the same answers.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2020

Logic is MonotonicLogic is Monotonic

Classical logic, anyway.Classical logic, anyway.
Monotonic ~= never gets smallerMonotonic ~= never gets smaller
In logic, a thing is true or false.In logic, a thing is true or false.

3>2 is true3>2 is true

If something is true, it’s true for all timeIf something is true, it’s true for all time
3>2 always was and always will be true3>2 always was and always will be true

us_president(‘Georgeus_president(‘George W. Bush’) ?W. Bush’) ?
loves(‘Tomloves(‘Tom Cruse’, ‘Katie Holms’) ?Cruse’, ‘Katie Holms’) ?

6

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2121

NonNon--Monotonic LogicMonotonic Logic

A nonA non--monotonic logic is one in which a monotonic logic is one in which a
proposition’s true value can change in proposition’s true value can change in
timetime
Learning a new fact may cause the Learning a new fact may cause the
number of true propositions to decrease.number of true propositions to decrease.
Prolog is nonProlog is non--monotonic for two reasons:monotonic for two reasons:

You can assert You can assert and retractand retract clausesclauses
Prolog uses “negation as failure”Prolog uses “negation as failure”

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2222

Assert and RetractAssert and Retract

Normally we assert and retract facts (i.e., base clauses)Normally we assert and retract facts (i.e., base clauses)
assert(loves(tom,nicoleassert(loves(tom,nicole)).)).
retract(loves(tom,nicoleretract(loves(tom,nicole)).)).
assert(loves(tom,katieassert(loves(tom,katie)).)).
retract(loves(tom,Xretract(loves(tom,X)).)).
retractall(loves(tom,Xretractall(loves(tom,X)).)).

You can assert/retract any clauseYou can assert/retract any clause
assert(assert(loves(X,Yloves(X,Y) :) :-- spouse(X,Yspouse(X,Y)).)).

Static vs. dynamic predicatesStatic vs. dynamic predicates

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2323

Negation as failureNegation as failure
NOT is basic to logicNOT is basic to logic
How can we prove that something is false?How can we prove that something is false?
Pure prolog only supports positive proofsPure prolog only supports positive proofs
Handling negation is much more difficultHandling negation is much more difficult

Quickly leads to Quickly leads to undecidabilityundecidability

Yet…Yet…
??-- man(tomman(tom).).
NoNo

In Prolog, we often use our inability to prove P In Prolog, we often use our inability to prove P
to be a prove that P is false.to be a prove that P is false.
This is the semantics databases assumeThis is the semantics databases assume

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2424

not is Prolog’s NAF operatornot is Prolog’s NAF operator

Birds can fly, except for penguins.Birds can fly, except for penguins.
canFly(XcanFly(X) :) :-- bird(Xbird(X),), not(penguin(Xnot(penguin(X)).)).
bird(eaglebird(eagle).). bird(wrenbird(wren).). bird(penguinbird(penguin).). bird(emubird(emu).).

Birds can fly unless we know them to be Birds can fly unless we know them to be
flightlessflightless
canFly(XcanFly(X) :) :-- bird(Xbird(X),), not(cantFly(Xnot(cantFly(X)).)).
cantFly(penguincantFly(penguin).). cantFly(emucantFly(emu).).

What does this mean?What does this mean?
not(bird(Xnot(bird(X))))

The ‘standard not operator is The ‘standard not operator is \\+.+.

7

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2525

A Simple Prolog ModelA Simple Prolog Model

Imagine prolog as a system which has a database Imagine prolog as a system which has a database
composed of two components:composed of two components:

FACTS FACTS -- statements about true relations which hold between statements about true relations which hold between
particular objects in the world. For example:particular objects in the world. For example:

parent(adam,able): adam is a parent of ableparent(adam,able): adam is a parent of able
parent(eve,able): eve is a parent of ableparent(eve,able): eve is a parent of able
male(adam): adam is male.male(adam): adam is male.

RULES RULES -- statements about true relations which hold between statements about true relations which hold between
objects in the world which contain generalizations, objects in the world which contain generalizations,
expressed through the use of variables. For example, the expressed through the use of variables. For example, the
rulerule

father(X,Y) :father(X,Y) :-- parent(X,Y), male(X).parent(X,Y), male(X).
might express:might express:

for any X and any Y, X is the father of Y if X is a parent of Y for any X and any Y, X is the father of Y if X is a parent of Y and and
X is male.X is male.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2626

Nomenclature and SyntaxNomenclature and Syntax

A prolog rule is called a A prolog rule is called a clauseclause..
A clause has a head, a neck and a body:A clause has a head, a neck and a body:
father(X,Y)father(X,Y) ::-- parent(X,Y) , male(X) parent(X,Y) , male(X) ..

headhead neck neck bodybody
the the headhead is a rule's conclusion.is a rule's conclusion.
The The bodybody is a rule's premise or condition.is a rule's premise or condition.
note:note:

read :read :-- as IFas IF
read , as ANDread , as AND
a . marks the end of inputa . marks the end of input

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2727

Prolog DatabaseProlog Database

father(X,Y) :- parent(X,Y),
male(X).

sibling(X,Y) :- ...

parent(adam,able)
parent(adam,cain)
male(adam)
...

Rules comprising the
“intensional database”

Facts comprising the
“extensional database”

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2828

ExtenExtenssional vs. Intenional vs. Intenssionalional

father(X,Y) :- parent(X,Y),
male(X).

sibling(X,Y) :- ...

parent(adam,able)
parent(adam,cain)
male(adam)
...

Rules comprising the
“intensional database”

Facts comprising the
“extensional database”

PrologProlog
DatabaseDatabase

The terms extensional and
intensional are borrowed from
the language philosophers use
for epistemology.

• Extension refers to whatever extends, i.e.,
“is quantifiable in space as well as in
time”.

• Intension is an antonym of extension,
referring to “that class of existence which
may be quantifiable in time but not in
space.”

• NOT intentional with a “t”, which has to
do with “will, volition, desire, plan, …”

For KBs and DBs we use
• extensional to refer to that which is

explicitly represented (e.g., a fact), and

• intensional to refer to that which is
represented abstractly, e.g., by a rule of
inference.

Epistemology is “a branch of philosophy
that investigates the origin, nature,
methods, and limits of knowledge”

8

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2929

A Simple Prolog SessionA Simple Prolog Session
| ?| ?--

assert(parent(adam,able))assert(parent(adam,able))
..

yesyes
| ?| ?--

assert(parent(eve,able)).assert(parent(eve,able)).
yesyes
| ?| ?-- assert(male(adam)).assert(male(adam)).
yesyes
| ?| ?-- parent(adam,able).parent(adam,able).
yesyes
| ?| ?-- parent(adam,X).parent(adam,X).
X = able X = able
yesyes

| ?| ?-- parent(X,able).parent(X,able).
X = adam ;X = adam ;
X = eve ;X = eve ;
nono
| ?| ?-- parent(X,able) , parent(X,able) ,

male(X).male(X).
X = adam ;X = adam ;
nono

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3030

A Prolog SessionA Prolog Session| ?| ?-- [user].[user].
| female(eve).| female(eve).
| | parent(adam,cainparent(adam,cain).).
| parent(eve,cain).| parent(eve,cain).
| father(X,Y) :| father(X,Y) :--

parent(X,Y), male(X).parent(X,Y), male(X).
| mother(X,Y) :| mother(X,Y) :--

parent(X,Y), female(X).parent(X,Y), female(X).
| ^Zuser consulted 356 | ^Zuser consulted 356

bytes 0.0666673 sec.bytes 0.0666673 sec.
yesyes
| ?| ?-- mother(Who,cain).mother(Who,cain).
Who = eve Who = eve
yesyes

| ?| ?-- mother(eve,Who).mother(eve,Who).
Who = cainWho = cain
yesyes
| ?| ?-- trace, mother(Who,cain).trace, mother(Who,cain).

(2) 1 Call: mother(_0,cain) ? (2) 1 Call: mother(_0,cain) ?
(3) 2 Call: parent(_0,cain) ? (3) 2 Call: parent(_0,cain) ?
(3) 2 Exit: (3) 2 Exit: parent(adam,cainparent(adam,cain))
(4) 2 Call: female(adam) ? (4) 2 Call: female(adam) ?
(4) 2 Fail: female(adam)(4) 2 Fail: female(adam)
(3) 2 Back to: parent(_0,cain) ? (3) 2 Back to: parent(_0,cain) ?
(3) 2 Exit: parent(eve,cain)(3) 2 Exit: parent(eve,cain)
(5) 2 Call: female(eve) ? (5) 2 Call: female(eve) ?
(5) 2 Exit: female(eve)(5) 2 Exit: female(eve)
(2) 1 Exit: mother(eve,cain)(2) 1 Exit: mother(eve,cain)

Who = eve Who = eve
yesyes

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3131

| ?| ?-- [user].[user].
| sibling(X,Y) :| sibling(X,Y) :--
| father(Pa,X),| father(Pa,X),
| father(Pa,Y),| father(Pa,Y),
| mother(Ma,X),| mother(Ma,X),
| mother(Ma,Y),| mother(Ma,Y),
| not(X=Y).| not(X=Y).
^Zuser consulted 152 bytes ^Zuser consulted 152 bytes

0.0500008 sec.0.0500008 sec.
yesyes
| ?| ?-- sibling(X,Y).sibling(X,Y).
X = ableX = able
Y = cain ;Y = cain ;
X = cainX = cain
Y = able ;Y = able ;

trace,sibling(X,Y).trace,sibling(X,Y).
(2) 1 Call: sibling(_0,_1) ? (2) 1 Call: sibling(_0,_1) ?
(3) 2 Call: father(_65643,_0) ? (3) 2 Call: father(_65643,_0) ?
(4) 3 Call: parent(_65643,_0) ? (4) 3 Call: parent(_65643,_0) ?
(4) 3 Exit: parent(adam,able)(4) 3 Exit: parent(adam,able)
(5) 3 Call: male(adam) ? (5) 3 Call: male(adam) ?
(5) 3 Exit: male(adam)(5) 3 Exit: male(adam)
(3) 2 Exit: father(adam,able)(3) 2 Exit: father(adam,able)
(6) 2 Call: father(adam,_1) ? (6) 2 Call: father(adam,_1) ?
(7) 3 Call: parent(adam,_1) ? (7) 3 Call: parent(adam,_1) ?
(7) 3 Exit: parent(adam,able)(7) 3 Exit: parent(adam,able)
(8) 3 Call: male(adam) ? (8) 3 Call: male(adam) ?
(8) 3 Exit: male(adam)(8) 3 Exit: male(adam)
(6) 2 Exit: father(adam,able)(6) 2 Exit: father(adam,able)
(9) 2 Call: mother(_65644,able) ? (9) 2 Call: mother(_65644,able) ?
(10) 3 Call: parent(_65644,able) ? (10) 3 Call: parent(_65644,able) ?
(10) 3 Exit: parent(adam,able)(10) 3 Exit: parent(adam,able)
(11) 3 Call: female(adam) ? (11) 3 Call: female(adam) ?
(11) 3 Fail: female(adam)(11) 3 Fail: female(adam)
(10) 3 Back to: parent(_65644,able) (10) 3 Back to: parent(_65644,able)

? ?
(10) 3 Exit: parent(eve,able)(10) 3 Exit: parent(eve,able)
(12) 3 Call: female(eve) ? (12) 3 Call: female(eve) ?
(12) 3 Exit: female(eve)(12) 3 Exit: female(eve)
(9) 2 Exit: mother(eve,able)(9) 2 Exit: mother(eve,able)
(13) 2 Call: mother(eve,able) ? (13) 2 Call: mother(eve,able) ?
(14) 3 Call: parent(eve,able) ? (14) 3 Call: parent(eve,able) ?
(14) 3 Exit: parent(eve,able)(14) 3 Exit: parent(eve,able)
(15) 3 Call: female(eve) ? (15) 3 Call: female(eve) ?
(15) 3 Exit: (15) 3 Exit: femalefemale(eve)(eve)
(13) 2 Exit: mother(eve,able)(13) 2 Exit: mother(eve,able)
(16) 2 Call: not able=able ? (16) 2 Call: not able=able ?
(17) 3 Call: able=able ? (17) 3 Call: able=able ?
(17) 3 exit: able=able(17) 3 exit: able=able
(16) 2 Back to: not able=able ? (16) 2 Back to: not able=able ?
(16) 2 Fail: not able=able(16) 2 Fail: not able=able
(15) 3 Back to: female(eve) ? (15) 3 Back to: female(eve) ?
(15) 3 Fail: female(eve)(15) 3 Fail: female(eve)

(14) 3 Back to: parent(eve,able) ? (14) 3 Back to: parent(eve,able) ?
(14) 3 Fail: parent(eve,able)(14) 3 Fail: parent(eve,able)
(13) 2 Back to: mother(eve,able) ? (13) 2 Back to: mother(eve,able) ?
(13) 2 Fail: mother(eve,able)(13) 2 Fail: mother(eve,able)
(12) 3 Back to: female(eve) ? (12) 3 Back to: female(eve) ?
(12) 3 Fail: female(eve)(12) 3 Fail: female(eve)
(10) 3 Back to: parent(_65644,able) (10) 3 Back to: parent(_65644,able)

? ?
(10) 3 Fail: parent(_65644,able)(10) 3 Fail: parent(_65644,able)
(9) 2 Back to: mother(_65644,able) ? (9) 2 Back to: mother(_65644,able) ?
(9) 2 Fail: mother(_65644,able)(9) 2 Fail: mother(_65644,able)
(8) 3 Back to: male(adam) ? (8) 3 Back to: male(adam) ?
(8) 3 Fail: male(adam)(8) 3 Fail: male(adam)
(7) 3 Back to: parent(adam,_1) ? (7) 3 Back to: parent(adam,_1) ?
(7) 3 Exit: (7) 3 Exit: parent(adam,cainparent(adam,cain))
(18) 3 Call: male(adam) ? (18) 3 Call: male(adam) ?
(18) 3 Exit: male(adam)(18) 3 Exit: male(adam)
(6) 2 Exit: father(adam,cain)(6) 2 Exit: father(adam,cain)
(19) 2 Call: mother(_65644,able) ? (19) 2 Call: mother(_65644,able) ?
(20) 3 Call: parent(_65644,able) ? (20) 3 Call: parent(_65644,able) ?
(20) 3 Exit: parent(adam,able)(20) 3 Exit: parent(adam,able)
(21) 3 Call: female(adam) ? (21) 3 Call: female(adam) ?
(21) 3 Fail: female(adam)(21) 3 Fail: female(adam)
(20) 3 Back to: parent(_65644,able) (20) 3 Back to: parent(_65644,able)

? ?
(20) 3 Exit: parent(eve,able)(20) 3 Exit: parent(eve,able)
(22) 3 Call: female(eve) ? (22) 3 Call: female(eve) ?
(22) 3 Exit: female(eve)(22) 3 Exit: female(eve)
(19) 2 Exit: mother(eve,able)(19) 2 Exit: mother(eve,able)
(23) 2 Call: mother(eve,cain) ? (23) 2 Call: mother(eve,cain) ?
(24) 3 Call: parent(eve,cain) ? (24) 3 Call: parent(eve,cain) ?
(24) 3 Exit: parent(eve,cain)(24) 3 Exit: parent(eve,cain)
(25) 3 Call: female(eve) ? (25) 3 Call: female(eve) ?
(25) 3 Exit: female(eve)(25) 3 Exit: female(eve)
(23) 2 Exit: mother(eve,cain)(23) 2 Exit: mother(eve,cain)
(26) 2 Call: not able=cain ? (26) 2 Call: not able=cain ?
(27) 3 Call: able=cain ? (27) 3 Call: able=cain ?
(27) 3 Fail: able=cain(27) 3 Fail: able=cain
(26) 2 Exit: not able=cain(26) 2 Exit: not able=cain
(2) 1 Exit: sibling(able,cain)(2) 1 Exit: sibling(able,cain)
X = ableX = able
Y = cain Y = cain
yes noyes no
| ?| ?--

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3232

How to Satisfy a GoalHow to Satisfy a Goal

Here is an informal description of how Prolog satisfies a Here is an informal description of how Prolog satisfies a
goal (like father(adam,X)). Suppose the goal is G:goal (like father(adam,X)). Suppose the goal is G:

if G = P,Q then first satisfy P, carry any variable if G = P,Q then first satisfy P, carry any variable
bindings forward to Q, and then satiety Q.bindings forward to Q, and then satiety Q.
if G = P;Q then satisfy P. If that fails, then try to if G = P;Q then satisfy P. If that fails, then try to
satisfy Q.satisfy Q.
if G = not(P) then try to satisfy P. If this succeeds, if G = not(P) then try to satisfy P. If this succeeds,
then fail and if it fails, then succeed.then fail and if it fails, then succeed.
if G is a simple goal, then look for a fact in the DB if G is a simple goal, then look for a fact in the DB
that unifies with G look for a rule whose conclusion that unifies with G look for a rule whose conclusion
unifies with G and try to satisfy its bodyunifies with G and try to satisfy its body

9

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3333

NoteNote

two basic conditions are true, which always succeeds, two basic conditions are true, which always succeeds,
and fail, which always fails.and fail, which always fails.
A comma (,) represents conjunction (i.e. and).A comma (,) represents conjunction (i.e. and).
A semiA semi--colon represents disjunction (i.e. or), as in:colon represents disjunction (i.e. or), as in:
grandParent(X,Y) :grandParent(X,Y) :-- grandFather(X,YgrandFather(X,Y); grandMother(X,Y).); grandMother(X,Y).

there is no real distinction between RULES and FACTS. there is no real distinction between RULES and FACTS.
A FACT is just a rule whose body is the trivial condition A FACT is just a rule whose body is the trivial condition
true. That is true. That is parent(adam,cainparent(adam,cain)) and and parent(adam,cainparent(adam,cain))
::-- true. true. are equivalentare equivalent
Goals can usually be posed with any of several Goals can usually be posed with any of several
combination of variables and constants:combination of variables and constants:

parent(cain,able) parent(cain,able) -- is Cain Able's parent?is Cain Able's parent?
parent(cain,X) parent(cain,X) -- Who is a child of Cain?Who is a child of Cain?
parent(X,cain) parent(X,cain) -- Who is Cain a child of?Who is Cain a child of?
parent(X,Y) parent(X,Y) -- What two people have a parent/child relationship?What two people have a parent/child relationship? UMBCUMBC

an Honors University in Marylandan Honors University in Maryland 3434

Prolog TermsProlog Terms
The term is the basic data structure in Prolog.The term is the basic data structure in Prolog.
The term is to Prolog what the sThe term is to Prolog what the s--expression is to Lisp.expression is to Lisp.
A term is either:A term is either:

a constanta constant
john , 13, 3.1415, +, 'a constant'john , 13, 3.1415, +, 'a constant'

a variablea variable
X, Var, _, _fooX, Var, _, _foo

a compound terma compound term
part(arm,body)part(arm,body)
part(arm(johnpart(arm(john),), body(johnbody(john))))

The reader and printer support operators:The reader and printer support operators:
-- X is read as ‘X is read as ‘--’(X).’(X).
5 + 2 is read as ‘+’(5,2).5 + 2 is read as ‘+’(5,2).
a:a:--b,c,db,c,d. read as ‘:. read as ‘:--’(a ‘,’(’(a ‘,’(b,’,’(c,db,’,’(c,d))).))).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3535

Compound TermsCompound Terms
A compound term can be thought of as a relation A compound term can be thought of as a relation
between one or more terms:between one or more terms:

part_of(finger,hand)part_of(finger,hand)
and is written as:and is written as:

1.1. the relation name (the relation name (principle functorprinciple functor) which) which
must be a constant.must be a constant.

2.2.An open parenthesisAn open parenthesis
3.3.The arguments The arguments -- one or more one or more

terms separated by commas.terms separated by commas.
4.4.A closing parenthesis.A closing parenthesis.
The number of arguments of a The number of arguments of a
compound terms is called its arity.compound terms is called its arity.

Term arity
f 0

f(a) 1
f(a,b) 2
f(g(a),b) 2

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3636

The Notion of UnificationThe Notion of Unification

Unification is when two things “become Unification is when two things “become
one”one”
Unification is kind of like assignmentUnification is kind of like assignment
Unification is kind of like equality in algebraUnification is kind of like equality in algebra
Unification is mostly like pattern matchingUnification is mostly like pattern matching
Example:Example:

loves(john, X)loves(john, X) unifies with unifies with loves(john, mary)loves(john, mary)
and in the process, and in the process, XX gets unified with gets unified with marymary

10

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3737

Unification IUnification I

Any value can be unified with itself.Any value can be unified with itself.
weather(sunny) = weather(sunny)weather(sunny) = weather(sunny)

A variable can be unified with another A variable can be unified with another
variable.variable.

X = YX = Y
A variable can be unified with A variable can be unified with
(“instantiated to”) any Prolog term.(“instantiated to”) any Prolog term.

Topic = weather(sunny)Topic = weather(sunny)

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3838

Unification IIUnification II

Two different structures can be unified if Two different structures can be unified if
their constituents can be unified.their constituents can be unified.

mother(mary, X) = mother(Y, father(Z))mother(mary, X) = mother(Y, father(Z))
In Prolog, a variable can be unified with a In Prolog, a variable can be unified with a
structure containing that same variable. structure containing that same variable.
This is usually a Bad Idea.This is usually a Bad Idea.
Unifying X and f(X) binds X to a circular Unifying X and f(X) binds X to a circular
structure which Prolog can not print.structure which Prolog can not print.

X = f(f(f(f(f(…X = f(f(f(f(f(…

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3939

Explicit UnificationExplicit Unification

The explicit unification operator is The explicit unification operator is ==
Unification is symmetric:Unification is symmetric:

Cain = father(adam)Cain = father(adam)
means the same asmeans the same as

father(adam) = Cainfather(adam) = Cain
Most unification happens implicitly, as a Most unification happens implicitly, as a
result of parameter transmission.result of parameter transmission.

E.g., Prolog E.g., Prolog trystrys to prove to prove older(Xolder(X, bob) by , bob) by
unifying it with the fact unifying it with the fact older(zeusolder(zeus,_).,_).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4040

Scope of NamesScope of Names

The scope of a variable is the single clause in The scope of a variable is the single clause in
which it appears.which it appears.
The scope of the “anonymous” (“don't care”) The scope of the “anonymous” (“don't care”)
variable (variable (egeg _ or _foo) is itself._ or _foo) is itself.

loves(_, _) = loves(john, mary)loves(_, _) = loves(john, mary)
A variable that only occurs once in a clause is a A variable that only occurs once in a clause is a
useless useless singleton;singleton; replace it with an replace it with an
anonymous variable.anonymous variable.

Most Prolog interpreters will issue warnings if you Most Prolog interpreters will issue warnings if you
have rules with singleton variableshave rules with singleton variables
isFather(XisFather(X) :) :-- male(Xmale(X),), parent(X,_childparent(X,_child).).

11

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4141

Writing Prolog ProgramsWriting Prolog Programs

Suppose the database containsSuppose the database contains
loves(chuck, X) :loves(chuck, X) :-- female(X), rich(X).female(X), rich(X).
female(jane).female(jane).

and we ask who Chuck loves,and we ask who Chuck loves,
??-- loves(chuck, Woman).loves(chuck, Woman).

female(X) female(X) finds finds a value for a value for XX , say, , say, janejane
rich(X)rich(X) then then teststests whether Jane is richwhether Jane is rich

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4242

Clauses as CasesClauses as Cases

A predicate consists of multiple clauses whose A predicate consists of multiple clauses whose
heads heads have the same principle functor and arity.have the same principle functor and arity.
Each clause represents a “case”.Each clause represents a “case”.
grandfather(X,Y) :- father(X,Z), father(Z,Y).
grandfather(X,Y) :- father(X,Z), mother(Z,Y).
abs(X, Y) :- X < 0, Y is -X.
abs(X, X) :- X >= 0.
Clauses with heads having different airty are Clauses with heads having different airty are
unrelated.unrelated.

Like methods in OO languagesLike methods in OO languages

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4343

OrderingOrdering

Clauses are always tried in orderClauses are always tried in order
buy(X) :buy(X) :-- good(X).good(X).
buy(X) :buy(X) :-- cheap(X).cheap(X).
cheap(‘Java 2 Complete’).cheap(‘Java 2 Complete’).
good(‘Thinking in Java’).good(‘Thinking in Java’).

What willWhat will buy(X) buy(X) choose first?choose first?

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4444

Ordering IIOrdering II

Try to handle more specific cases (those having Try to handle more specific cases (those having
more variables instantiated) first.more variables instantiated) first.

dislikes(john, bill).

dislikes(john, X) :- rich(X).

dislikes(X, Y) :- loves(X, Z), loves(Z, Y).

12

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4545

Ordering IIIOrdering III

Some "actions" cannot be undone by Some "actions" cannot be undone by
backtracking over them:backtracking over them:

write, nl, assert, retract, consultwrite, nl, assert, retract, consult
Do tests before you do undoable actions:Do tests before you do undoable actions:

take(A) :take(A) :--
at(A, in_hand),at(A, in_hand),
write('Youwrite('You\\'re already holding it!'),'re already holding it!'),
nl.nl.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4646

RecursionRecursion

Prolog makes avoiding infinite recursion the Prolog makes avoiding infinite recursion the
programmer’s responsibility.programmer’s responsibility.
But it always tries clauses in order and processes But it always tries clauses in order and processes
conditions in a clause from left to right.conditions in a clause from left to right.
So, handle the base cases first, recur only with a So, handle the base cases first, recur only with a
simpler case, use right recursion.simpler case, use right recursion.
ancestor(P1,P2) :- parent(P1,P2).
ancestor(P1,P2) :- parent(P1,X), ancestor(X,P2).

But not:But not:
ancestor(P1,P2) :- parent(P1,P2).
ancestor(P1,P2) :- ancestor(P1,X), parent(X,P2).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4747

Facts and RulesFacts and Rules
Designing a Prolog knowledge base usually starts Designing a Prolog knowledge base usually starts
with deciding which predicates will be provided as with deciding which predicates will be provided as
facts and which will be defined by rules.facts and which will be defined by rules.
parent(Adam,cain).
child(X,Y) :- parent(Y,X).

We don’t have to worry about this in logic and in We don’t have to worry about this in logic and in
some logic programming languages:some logic programming languages:
parent(X,Y) child(Y,X)

Of course, it’s common for a predicate to be Of course, it’s common for a predicate to be
defined using both facts and rules.defined using both facts and rules.

Example: int(0). Example: int(0). int(suc(Xint(suc(X)) :)) :-- int(Xint(X).).
What’s at issue is really avoiding nonWhat’s at issue is really avoiding non--terminating terminating
reasoning.reasoning.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4848

Choosing predicatesChoosing predicates
Designing a set of predicatesDesigning a set of predicates
(an ontology) requires knowledge of(an ontology) requires knowledge of
the domain and how the representationthe domain and how the representation
will be used.will be used.
Example: representing an object’s color.Example: representing an object’s color.

green(kermit)
color(kermit,green)
value(kermit,color,green)
attribute(kermit,color,value,green)

Which of these is best?Which of these is best?

13

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 4949

Issues in choosingIssues in choosing
predicatespredicates

What queries can be asked?What queries can be asked?
A principle A principle functorfunctor can not be a variable, e.g., can’t do: can not be a variable, e.g., can’t do:
Relation(john,maryRelation(john,mary))
Which can we use to answer:Which can we use to answer:

Is Is kermitkermit green?green?
What color is Kermit?What color is Kermit?
What do we know about Kermit?What do we know about Kermit?
What is the range of the color attribute?What is the range of the color attribute?

How efficient is retrieval of facts and rules.How efficient is retrieval of facts and rules.
Let a term’s signature be its principle Let a term’s signature be its principle functorfunctor and and arityarity..
Prolog indexes a fact or rule head on its signature and the Prolog indexes a fact or rule head on its signature and the
signature of its first argument.signature of its first argument.
This is done for efficiencyThis is done for efficiency

green(kermit)
color(kermit,green)
value(kermit,color,green)
attribute(kermit,color,value,gree

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5050

Cut and CutCut and Cut--failfail

The cut, !, is a commit point. It commits to:The cut, !, is a commit point. It commits to:
the clause in which it occurs (can't try another)the clause in which it occurs (can't try another)
everything up to that point in the clauseeverything up to that point in the clause

Example:Example:
loves(chuck, X) :loves(chuck, X) :-- female(X), !, rich(X).female(X), !, rich(X).

Chuck loves the Chuck loves the firstfirst female in the database, but only if she is female in the database, but only if she is
rich.rich.

CutCut--fail, (fail, (!, fail!, fail), means give up), means give up nownow and don't even try and don't even try
for another solution. for another solution.
More on this laterMore on this later

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5151

Arithmetic: BuiltArithmetic: Built--In is/2In is/2

Arithmetic expressions aren’t normally evaluated in Arithmetic expressions aren’t normally evaluated in
Prolog.Prolog.
BuiltBuilt--In In infix operatorinfix operator is/2is/2 evaluates it’s 2evaluates it’s 2ndnd argument, argument,
and unifies the result with it’s 1and unifies the result with it’s 1stst argument.argument.
| ?| ?-- X = 5 + 2.X = 5 + 2.
X = 5+2?X = 5+2?
yesyes
| ?| ?-- X is 5 + 2.X is 5 + 2.
X = 7 ?X = 7 ?
yesyes

Any variables in the rightAny variables in the right--hand side of hand side of isis/2 must be /2 must be
instantiated when it is evaluated.instantiated when it is evaluated.
More on this laterMore on this later

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5252

What you can't doWhat you can't do

There are no functions, only predicatesThere are no functions, only predicates

Prolog is programming in logic, therefore there Prolog is programming in logic, therefore there
are few control structuresare few control structures

There are no assignment statements; the There are no assignment statements; the statestate
of the program is what's in the databaseof the program is what's in the database

14

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5353

Workarounds IIWorkarounds II

There are few control structures in Prolog, BUT…There are few control structures in Prolog, BUT…
You don't need IF because you can use multiple You don't need IF because you can use multiple
clauses with "tests" in themclauses with "tests" in them
You seldom need loops because you have You seldom need loops because you have
recursionrecursion
You can, if necessary, construct a "fail loop"You can, if necessary, construct a "fail loop"

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5454

Fail LoopsFail Loops

Use fail loops sparingly, if at all.Use fail loops sparingly, if at all.

notice_objects_at(Place) :-
at(X, Place),
write('There is a '), write(X),
write(' here.'), nl,
fail.

notice_objects_at(_).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5555

Workarounds IIWorkarounds II

There are no functions, only predicates, There are no functions, only predicates,
BUT…BUT…
A call to a predicate can instantiate A call to a predicate can instantiate
variables: variables: female(X)female(X) can eithercan either

look for a value for look for a value for X X that satisfies that satisfies female(X),female(X),
oror
if if X X already has a value, test whether already has a value, test whether
female(X)female(X) can be proved truecan be proved true

By convention, output variables come lastBy convention, output variables come last
Square(N,N2) :Square(N,N2) :-- N2 is N*N.N2 is N*N.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5656

Workarounds IIWorkarounds II
Functions are a subset of relations, so you can define Functions are a subset of relations, so you can define
a function like factorial as a relationa function like factorial as a relation

factorial(N,0) :- N<1.
factorial(1,1).
factorial(N,M) :-

N2 is N-1,
factorial(N2,M2),
M is N*M2.

The last argument to the relation is used for the value The last argument to the relation is used for the value
that the function returns.that the function returns.
How would you define: How would you define:

fib(nfib(n)=fib(n)=fib(n--1)+fib(n1)+fib(n--2) where fib(0)=0 and 2) where fib(0)=0 and
fib(1)=1 fib(1)=1

15

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5757

Workarounds IIIWorkarounds III

There are no assignment statements, BUT…There are no assignment statements, BUT…
the Prolog database keeps track of program statethe Prolog database keeps track of program state
bump_countbump_count ::--

retract(count(X)),retract(count(X)),
Y is X + 1,Y is X + 1,
assert(count(Y)).assert(count(Y)).

Don't get carried away and misuse this!Don't get carried away and misuse this!

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5858

Lists in PrologLists in Prolog

Prolog has a simple universal data Prolog has a simple universal data
structure, the term, out of which others structure, the term, out of which others
are built.are built.
Prolog lists are important becauseProlog lists are important because

They are useful in practiceThey are useful in practice
They offer good examples of writing standard They offer good examples of writing standard
recursive predicatesrecursive predicates
They show how a little syntactic sugar helpsThey show how a little syntactic sugar helps

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 5959

Linked ListsLinked Lists
Prolog allows a special syntax for lists:Prolog allows a special syntax for lists:

[a,b,c] is a list of 3 elements[a,b,c] is a list of 3 elements
[] is a special atom indicating a list with 0 elements[] is a special atom indicating a list with 0 elements

Internally, Prolog lists are regular Prolog terms Internally, Prolog lists are regular Prolog terms
with the functor ‘.’ (so called “dotted pairs”)with the functor ‘.’ (so called “dotted pairs”)
[a,b,c] = ‘.’(a, ‘.’(b, ‘.’(c, []))).

The symbol | in a list indicates “rest of list”, or The symbol | in a list indicates “rest of list”, or
the term that is a dotted pair’s 2the term that is a dotted pair’s 2ndnd argument.argument.
[a,b,c] = [a|[b,c]].[a,b,c] = [a|[b,c]].

[Head|Tail] is a common expression for dividing [Head|Tail] is a common expression for dividing
a list into its 1st element (Head) and the rest of a list into its 1st element (Head) and the rest of
the list (Tail).the list (Tail). UMBCUMBC

an Honors University in Marylandan Honors University in Maryland 6060

Example: list/1Example: list/1

% list(?List) succeeds if its arg is a well formed list.

list([]).
list([_Head|Tail]):-

list(Tail).

Since Prolog is untyped, we don’t have to know Since Prolog is untyped, we don’t have to know
anything about anything about HeadHead except that it is a term.except that it is a term.
The list can have terms of any typeThe list can have terms of any type
[[1, foo, X, [1, foo, X, [sub, listsub, list], 3.14], 3.14]]

16

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6161

Example: member/2Example: member/2
% member(?Element, ?List) is true iff Element is a % member(?Element, ?List) is true iff Element is a
% top% top--level member of the list level member of the list ListList..
member(Element, [Element|_Tail]).
member(Element, [_Head|Tail]):- member(Element, Tail).

This is a standard recursive definition of member:
(1) If the list has some elements, is what we’re

looking for the first one?
(2) If the list has some elements, is what we’re

looking for in the rest of the list?
(3) The answer is no.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6262

Member has several usesMember has several uses
% member(+,+) checks% member(+,+) checks
% membership.% membership.
| ?| ?-- member(b,[a,b,c]).member(b,[a,b,c]).
yesyes
| ?| ?-- member(x,[a,b,c]).member(x,[a,b,c]).
nono

% member(% member(--,+) generates,+) generates
% members.% members.
| ?| ?-- member(X,[a,b,c]).member(X,[a,b,c]).
X = a ? ;X = a ? ;
X = b ? ;X = b ? ;
X = c ? ;X = c ? ;
nono
| ?| ?-- member(X,[a,b,c,1,d,e,2]),member(X,[a,b,c,1,d,e,2]),

integer(X).integer(X).
X = 1 ? ;X = 1 ? ;
X = 2 ? ;X = 2 ? ;
nono

% member(+,% member(+,--) generates lists.) generates lists.
| ?| ?-- member(a,L).member(a,L).
L = [a|_A] ? ;L = [a|_A] ? ;
L = [_A,a|_B] ? ;L = [_A,a|_B] ? ;
L = [_A,_B,a|_C] ?L = [_A,_B,a|_C] ?
yesyes

% member(% member(--,,--) generates lists.) generates lists.
| ?| ?-- member(X,L).member(X,L).
L = [X|_A] ? ;L = [X|_A] ? ;
L = [_A,X|_B] ? ;L = [_A,X|_B] ? ;
L = [_A,_B,X|_C] ?L = [_A,_B,X|_C] ?
yesyes
| ?| ?--

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6363

Using member to test list elementsUsing member to test list elements

Does a list L have a negative number in it?Does a list L have a negative number in it?
member(X,Lmember(X,L),), number(Nnumber(N), N<0.), N<0.

Are all of the elements of L numbers between 1 Are all of the elements of L numbers between 1
and 10?and 10?

not(not(member(X,Lmember(X,L) ,) ,
not(number(Xnot(number(X) ; X<1 ; X>10))) ; X<1 ; X>10))

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6464

Example: delete/3Example: delete/3

% delete(+Element, +List, % delete(+Element, +List, --NewList)NewList)
% delete/3 succeeds if NewList results from% delete/3 succeeds if NewList results from
% removing one occurrence of Element from List.% removing one occurrence of Element from List.

delete(Element, [Element|Tail], Tail).
delete(Element, [Head|Tail], [Head|NewTail]):-

delete(Element, Tail, NewTail).

17

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6565

Example: append/3Example: append/3

% append(?List1, ?List2, ?List3)% append(?List1, ?List2, ?List3)
% append/3 succeeds if List3 contains all the% append/3 succeeds if List3 contains all the
% elements of List1, followed by all the elements% elements of List1, followed by all the elements
% of List2.% of List2.

append([], List2, List2).
append([Head|List1], List2, [Head|List3]):-

append(List1, List2, List3).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6666

Append is amazingAppend is amazing
% append(+,+,+) checks% append(+,+,+) checks
| ?| ?-- append([1,2],[a,b],[1,2,a,x]).append([1,2],[a,b],[1,2,a,x]).
nono

% append(+,+,% append(+,+,--) concatenates) concatenates
| ?| ?-- append([1,2],[a,b],L).append([1,2],[a,b],L).
L = [1,2,a,b] ?L = [1,2,a,b] ?
yesyes

% append(+,% append(+,--,+) removes prefix. ,+) removes prefix.
| ?| ?-- append([1,2],L,[1,2,a,b]).append([1,2],L,[1,2,a,b]).
L = [a,b] ?L = [a,b] ?
yesyes

% append(% append(--,+,+) removes suffix.,+,+) removes suffix.
| ?| ?-- append(X,[a,b],[1,2,a,b]).append(X,[a,b],[1,2,a,b]).
X = [1,2] ?X = [1,2] ?
yesyes

% append(% append(--,,--,+) generates all,+) generates all
% ways to split a list into a% ways to split a list into a
% prefix and suffix.% prefix and suffix.
| ?| ?-- append(X,Y,[1,2,a,b]).append(X,Y,[1,2,a,b]).
X = [],X = [],
Y = [1,2,a,b] ? ;Y = [1,2,a,b] ? ;

X = [1],X = [1],
Y = [2,a,b] ? ;Y = [2,a,b] ? ;

X = [1,2],X = [1,2],
Y = [a,b] ? ;Y = [a,b] ? ;

X = [1,2,a],X = [1,2,a],
Y = [b] ? ;Y = [b] ? ;

X = [1,2,a,b],X = [1,2,a,b],
Y = [] ? ;Y = [] ? ;
nono

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6767

Example: sublist/3Example: sublist/3

% sublist(?SubList, +List). Note: The 1% sublist(?SubList, +List). Note: The 1stst append append
% finds a beginning point for the sublist and the % finds a beginning point for the sublist and the
% 2% 2ndnd append finds an end pointappend finds an end point
sublist(SubList, List):-

append(_List1, List2, List),
append(SubList, _List3, List2).

% example: sublist([3,4],[1,2,3,4,5,6])% example: sublist([3,4],[1,2,3,4,5,6])

1 2 3 4 5 6
list

list2list1
list3sublist

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6868

Example: sublist/3 (cont)Example: sublist/3 (cont)

% here’s another way to write sublist/2 % here’s another way to write sublist/2
sublist1(SubList, List):-

append(List1, _List2, List),
append(_List3, SubList, List1).

18

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 6969

Example: “naïve” reverseExample: “naïve” reverse
% nreverse(?List, ?ReversedList) is true iff the% nreverse(?List, ?ReversedList) is true iff the
% result of reversing the top% result of reversing the top--level elements oflevel elements of
% list List is equal to ReversedList.% list List is equal to ReversedList.

nreverse([], []).
nreverse([Head|Tail], ReversedList):-

nreverse(Tail, ReversedTail),
append(ReversedTail, [Head], ReversedList).

this is simple but inefficientthis is simple but inefficient
It’s not tail recursiveIt’s not tail recursive
Append is constantly copying and recopying listsAppend is constantly copying and recopying lists

it’s a traditional benchmark for Prolog.it’s a traditional benchmark for Prolog.
UMBCUMBC

an Honors University in Marylandan Honors University in Maryland 7070

Example: efficient reverse/3Example: efficient reverse/3

% reverse(+List, % reverse(+List, --ReversedList) is a “tail recursive”ReversedList) is a “tail recursive”
% version of reverse.% version of reverse.
reverse(List, ReversedList) :-

reverse1(List, [], ReversedList).

reverse1([], ReversedList, ReversedList).
reverse1([Head|Tail], PartialList, ReversedList):-

reverse1(Tail, [Head|PartialList], ReversedList).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 7171

reverse and nreversereverse and nreverse

| ?- trace.
{The debugger will … everything (trace)}
yes
| ?- nreverse([1,2,3],L).

1 1 Call: nreverse([1,2,3],_204) ?
2 2 Call: nreverse([2,3],_712) ?
3 3 Call: nreverse([3],_1122) ?
4 4 Call: nreverse([],_1531) ?
4 4 Exit: nreverse([],[]) ?
5 4 Call: append([],[3],_1122) ?
5 4 Exit: append([],[3],[3]) ?
3 3 Exit: nreverse([3],[3]) ?
6 3 Call: append([3],[2],_712) ?
7 4 Call: append([],[2],_3800) ?
7 4 Exit: append([],[2],[2]) ?
6 3 Exit: append([3],[2],[3,2]) ?
2 2 Exit: nreverse([2,3],[3,2]) ?
8 2 Call: append([3,2],[1],_204) ?
9 3 Call: append([2],[1],_5679) ?
10 4 Call: append([],[1],_6083) ?
10 4 Exit: append([],[1],[1]) ?
9 3 Exit: append([2],[1],[2,1]) ?
8 2 Exit: append([3,2],[1],[3,2,1]) ?
1 1 Exit: nreverse([1,2,3],[3,2,1]) ?

L = [3,2,1] ?
yes

| ?- reverse([1,2,3],L).
1 1 Call: reverse([1,2,3],_204) ?
2 2 Call: reverse1([1,2,3],[],_204) ?
3 3 Call: reverse1([2,3],[1],_204) ?
4 4 Call: reverse1([3],[2,1],_204) ?
5 5 Call: reverse1([],[3,2,1],_204) ?
5 5 Exit: reverse1([],[3,2,1],[3,2,1]) ?
4 4 Exit: reverse1([3],[2,1],[3,2,1]) ?
3 3 Exit: reverse1([2,3],[1],[3,2,1]) ?
2 2 Exit: reverse1([1,2,3],[],[3,2,1]) ?
1 1 Exit: reverse([1,2,3],[3,2,1]) ?

L = [3,2,1] ?

yes

Note: calling trace/0
turns on tracing. Calling
notrace/0 turns it off. UMBCUMBC

an Honors University in Marylandan Honors University in Maryland 7272

Finding PathsFinding Paths
adj(1,2). adj(1,3).adj(1,2). adj(1,3).
adj(2,3). adj(2,4).adj(2,3). adj(2,4).
adj(3,4). adj(5,6).adj(3,4). adj(5,6).

adjacent(N1,N2) :adjacent(N1,N2) :-- adj(N1,N2).adj(N1,N2).
adjacent(N1,N2) :adjacent(N1,N2) :-- adj(N2,N1).adj(N2,N1).

connected(From,Toconnected(From,To) :) :--
go(From,To,[Fromgo(From,To,[From]).]).

go(From,To,Passedgo(From,To,Passed) :) :--
adjacent(From,Toadjacent(From,To),),

not(member(To,Passednot(member(To,Passed)).)).

go(From,To,Passedgo(From,To,Passed) :) :--
adjacent(From,Nextadjacent(From,Next),),
not(member(Next,Passednot(member(Next,Passed)),)),
go(Next,To,[Next|Passedgo(Next,To,[Next|Passed]).]).

1
6

5

4

3

2

1 IS CONNECTED TO 2,3,4
Paths:
12
13
123
124
132
134
1243
1234
1342
1324

19

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 7373

““Pure Prolog” and nonPure Prolog” and non--logical builtlogical built--insins

All the examples so far have been “pure Prolog”All the examples so far have been “pure Prolog”
Contain no builtContain no built--ins with nonins with non--logical sidelogical side--effectseffects

Prolog has many builtProlog has many built--in predicates that have such sidein predicates that have such side--
effects:effects:

Type checking of termsType checking of terms
ArithmeticArithmetic
Control executionControl execution
Input and outputInput and output
Modify the program during execution (assert, retract, etc.)Modify the program during execution (assert, retract, etc.)
Perform aggregation operationsPerform aggregation operations

Use of nonUse of non--logical builtlogical built--in predicates usually effects the in predicates usually effects the
reversability of your program.reversability of your program.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 7474

The EndThe End

