Prolog 11

The Notion of Unification

Unification is when two things “become one”
Unification is kind of like assignment
Unification is kind of like equality in algebra
Unification is mostly like pattern matching

Example:
- loves(john, X) can unify with loves(john, mary)
— and in the process, X gets unified with mary

Unification I

* Any value can be unified with itself.
- weather(sunny) = weather(sunny)

» A variable can be unified with another variable.

-X=Y

* A variable can be unified with (“instantiated
to”’) any Prolog term.
- Topic = weather(sunny)

Unification I1

» Two different structures can be unified if
their constituents can be unified.
- mother(mary, X) = mother(Y, father(Z))
A variable can be unified with a structure
containing that same variable. This is
usually a Bad Idea.
- X = f(X)

Unification II1

* The explicit unification operator is =
* Unification is symmetric:
Cain = father(adam)
means the same as
father(adam) = Cain

* Most unification happens implicitly, as a
result of parameter transmission.

Scope of Names

» The scope of a variable is the single clause in
which it appears.

* The scope of the “anonymous” (“don't care™)
variable, _, 1s itself.
- loves(_, _) = loves(john, mary)

* A variable that only occurs once in a clause is
a useless singleton, you should replace it
with the anonymous variable

Writing Prolog Programs

* Suppose the database contains

loves(chuck, X) :- female(X), rich(X).

female(jane).
and we ask who Chuck loves,
?- loves(chuck, Woman).

+ female(X) finds a value for X, say, jane
* rich(X) then rests whether Jane is rich

Clauses as Cases

* A predicate consists of multiple clauses,
each of which represents a “case”

grandson(X,Y) :- son(X,Z), son(Z.Y).
grandson(X,Y) :- daughter(X,Z), son(Z,Y).

abs(X,Y):- X<0,Yis-X.
abs(X, X) :- X»>=0.

Ordering

* Clauses are always tried in order

* buy(X) :- good(X).
buy(X) :- cheap(X).

cheap('Java 2 Complete’).
good(‘Thinking in Java).

« What will buy(X) choose first?

Ordering 11

* Try to handle more specific cases (those
having more variables instantiated) first.

dislikes(john, bill).
dislikes(john, X) :- rich(X).
dislikes(X, Y) :- loves(X, Z), loves(Z, Y).

Ordering 111

» Some "actions" cannot be undone by
backtracking over them:

- write, nl, assert, retract, consult

* Do tests before you do undoable actions:
- take(A) :-
at(A, in_hand),
write('You\'re already holding it!"),
nl.

Recursion

e Handle the base cases first

ancestor(X, Y) :- child(Y, X).
(X is an ancestor of Y if Y is a child of X.)

* Recur only with a simpler case

ancestor(X,Y) :-

child(Z, X), ancestor(Z, Y).
(X is an ancestor of Y if Z is a child of X and
Z is an ancestor of Y).

Case Level

* You can often choose the "level" at which
you want cases to be defined.

son(isaac, steven).
child(X, Y) :- son(X, Y).

male(isaac).
child(isaac, steven).
son(X, Y) :- male(X), child(X, Y).

Recursive Loops

* Prolog proofs must be tree structured, that
is, they may not contain recursive loops.

- child(X.Y) :- son(X,Y).
- son(X,Y) :- child(X,Y), male(X).

- ?-son(isaac, steven). <—— May loop!
« Why? Neither child/2 nor son/2 is atomic

14

Cut and Cut-fail

e The cut, !, is a commit point. It commits to:
— the clause in which it occurs (can't try another)
— everything up to that point in the clause

* Example:
- loves(chuck, X) :- female(X), !, rich(X).

— Chuck loves the first female in the database, but only if
she is rich.

* Cut-fail, (!, fail), means give up now and don't
even try for another solution.

What you can't do
* There are no functions, only predicates

 Prolog is programming in logic, therefore
there are few control structures

* There are no assignment statements; the state
of the program is what's in the database

Workarounds I1

There are few control structures in Prolog,
BUT...

You don't need IF because you can use multiple
clauses with "tests" in them

You seldom need loops because you have
recursion

You can, if necessary, construct a "fail loop"

Fail Loops

notice_objects_at(Place) :-
at(X, Place),
write('There isa '), write(X),
write(' here.'), nl,
fail.
notice_objects_at().

* Use fail loops sparingly, if at all.

Workarounds I1

* There are no functions, only predicates,
BUT...
* A call to a predicate can instantiate variables:
female(X) can either
— look for a value for X that satisfies female(X), or
— if X already has a value, test whether female(X)
can be proved true

* By convention, output variables are put last

Workarounds 11

* Functions are actually a subset of relations, so you can
define a function like factorial as a relation
factorial(N,0) :- N<I.
factorial(1,1).
factorial(N,M) :-
N2 is N-1,
factorial(N2,M2),
M is N*M2.

* The last argument to the relation is used for the
value that the function returns.

* How would you define:
fib(n)=fib(n-1)+fib(n-2) where fib(0)=0 and fib(1)=1 ,,

Workarounds II1

* There are no assignment statements, BUT...

* the Prolog database keeps track of program state
- assert(at(fly, bedroom))

- bump_count :-
retract(count(X)),
YisX+1,
assert(count(Y)).

* Don't get carried away and misuse this!

21

The End

22

