Prolog 1

Syllogisms

* “Prolog” is all about programming in logic.
— Socrates is a man.
— All men are mortal.
— Therefore, Socrates is mortal.

Facts, rules, and queries

* Fact: Socrates is a man.
man(socrates).

* Rule: All men are mortal.
mortal(X) :- man(X).

* Query: Is Socrates mortal?
mortal(socrates).

Running Prolog |

* Create your "database" (program) in any
editor

 Save it as text only, with a .pl extension

 Here's the complete "program":

man(socrates).
mortal(X) :- man(X).




Running Prolog II

* Prolog is completely interactive.
» Begin by invoking the Prolog interpreter.
— sicstus
* Then load your program.
— consult(‘mortal.pl’)
 Then, ask your question at the prompt:
- mortal(socrates).
* Prolog responds:
- Yes

On gl.umbc.edu

> sicstus
SICStus 3.7.1 ... Licensed to umbc.edu
| 2- consult('mortal pl').

{consulting
/home/faculty4/finin/cmsc/331/fall00/prolog/mortal pl...}

{/home/faculty4/finin/cmsc/331/fall00/prolog/mortal.pl
consulted, 0 msec 624 bytes)}

yes
| 2- mortal(socrates).
yes

| 2- mortal(X).

X = socrates ?

yes

| 2-

Syntax I: Structures or Terms

» Example structures:
- sunshine
- man(socrates)
- path(garden, south, sundial)
* <structure> ::=
<name> | <name> ( <arguments> )
* <arguments> :i=
<argument> | <argument> , <arguments>

Syntax II: Base Clauses

* Base clauses are like simple facts.
» Example base clauses:

- debug_on.

- loves(john, mary).

- loves(mary, bill).

- <base clause> ::= <structure> .




Syntax III: Nonbase Clauses
* Non-base clauses are like rules.

* Example non-base clauses:
- mortal(X) :- man(X).
- mortal(X) :- woman(X)
- happy(X) :- healthy(X), wealthy(X), wise(X).
* <nonbase clause> ::=
<structure> :- <structures> .

+ <structures> ::=
<structure> | <structures> , <structure>

Syntax IV: Predicates

* A predicate is a collection of clauses with the
same functor and arity.

loves(john, mary).

loves(mary, bill).

loves(chuck, X) :- female(X), rich(X).
* <predicate> =

<clause> | <predicate> <clause>
* <clause> ::=

<base clause> | <nonbase clause>

Syntax V: Programs

» A program is a collection of predicates.
* Predicates can be in any order.

* Predicates are used in the order in which
they occur.

Syntax VI: Assorted details

* Variables begin with a capital letter or an
underscore:
X, Socrates, _result
* Atomic symbols do not begin with a capital letter:
X, socrates
* Other atomic symbols must be enclosed in single
quotes:
- 'Socrates’
- 'C:/My Documents/examples.pl’




Syntax VII: Assorted details

* In a quoted atom, a single quote must be
quoted or backslashed: ‘Can''t, or won\'t?’

* /* Comments are like this */

* Prolog allows some infix operators, such as :-
(turnstile) and , (comma). These are syntactic
sugar for the functors ':-' and ',".

* These are equivalent:
":-'(mortal(X), man(X)).
mortal(X) :- man(X).

Backtracking

+ loves(chuck, X) :- female(X), rich(X).
- female(jane).

- female(mary).

* rich(mary).

Now, Suppose we ask: loves(chuck, X).

+ female(X) = female(jane), X = jane.

* rich(jane) fails.

- female(X) = female(mary), X = mary.
* rich(mary) succeeds.

Additional answers

- female(jane).
female(mary).
female(susan).

+ ?- female(X).

« X = jane ;
+ X = mary
* Yes

Readings

* loves(chuck, X) :- female(X), rich(X).

* Declarative reading: Chuck loves X if X is
female and rich.

* Approximate procedural reading: To find
an X that Chuck loves, first find a female X,
then check that X is rich.

* Declarative readings are almost always
preferred.




Nonmonotonic logic

Prolog’s facts and rules can be changed at any
time.
assert(man(plato)).
assert((loves(chuck,X) :- female(X), rich(X))).
retract(man(plato)).

retract((loves(chuck,X) :- female(X), rich(X))).

Common problems

* Capitalization is extremely important!
* No space between a functor and its
argument list:
man(socrates), not man (socrates).

» Don’t forget the period! (But you can put it
on the next line.)

A Simple Prolog Model

* Imagine prolog as a system which has a database
composed of two components:

— FACTS - statements about true relations which hold

between particular objects in the world. For example:
parent(adam,able): adam is a parent of able
parent(eve,able): eve is a parent of able
male(adam): adam is male.

— RULES - statements about true relations which hold
between objects in the world which contain
generalizations, expressed through the use of variables.
For example, the rule

father(X,Y) :- parent(X,Y), male(X).
might express:

for any X and any Y, X is the father of Y if X is a parent of Y '
and X is male. ’

Nomenclature and Syntax

* A prolog rule is called a clause.
* A clause has a head, a neck and a body:
father(X,Y) :-  parent(X,Y), male(X) .
head neck bOdy
the head is a rule's conclusion.

» The body is a rule's premise or condition.
* note:
—read :- as IF
—read , as AND
— a . marks the end of input 2




Prolog Database

parent(adam,able)
parent(adam,cain) Facts comprising the
male(adam) “extensional database”

Rules comprising the
“intensional database”
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Extensional vs. Intensional

The terms extensional and Prolog

intensional are borrowed from Database

the language philosophers use parent(adam,able) .

f . / parent(adam,cain) Facts comprising the
or epis temo ogy. male(adam) “extensional database”

 Extension refers to whatever extends, i.e., “is
quantifiable in space as well as in time”.
ules comprising the

« Intension is an antonym of extension, s °
‘intensional database”

referring to “that class of existence which
may be quantifiable in time but not in space.”

« NOT intentional with a “t”, which has to do
with “will, volition, desire, plan, ...”

For KBs and DBs we use Epistemology is “a branch of philosophy
« extensional to refer to that which is explicitly that investigates the origin, nature,
represented (e.g., a fact), and methods, and limits of knowledge”
« intensional to refer to that which is
represented abstractly, e.g., by a rule of »
inference.

A Simple Prolog Session

7 | 7- parent(X,able).
assert(parent(adam,able)).
X =adam ;
yes B _
| 7- assert(parent(eve,able)). X=eve;
yes no
| 2- assert(male(adam)). | 7- parent(X,able) , male(X).
yes X =adam ;
| 7- parent(adam,able). no
yes
| 2- parent(adam,X).
X =able
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A Prolog Session

| 2- [user]. | 7- mother(eve,Who).
| female(eve). Who = cain
| parent(adam,cain). yes
| parent(eve,cain). | ?- trace, mother(Who,cain).
| father(X,Y) :- parent(X,Y), (2) 1 Call: mother(_0,cain) ?
male(X). (3)2 Call: parent(_0,cain) ?
| mother(X,Y) :- parent(X,Y), (3) 2 Exit: parent(adam,cain)
| AZfemale(X).l 1356 b (4) 2 Call: female(adam) ?
user consulte: ytes .1,
0.0666673 sec. (4)2 Fail: female(adam) .
(3)2 Back to: parent(_0,cain) ?
yes
. (3) 2 Exit: parent(eve,cain)
| 2- mother(Who,cain).
_ (5)2 Call: female(eve) ?
Who = eve .
o (5) 2 Exit: female(eve)
Y (2) 1 Exit: mother(eve,cain)
Who = eve
yes 24




(14)3 Bac

| 2- [user].

| sibling(X,Y) :-

| father(Pa,X),

| father(Pa,Y),

| mother(Ma,X),

| mother(Ma,Y),

| not(X=Y).

~Zuser consulted 152 bytes 0.0500008
sec.

yes

| 2- sibling(X,Y).

X =able

Y =cain ;

X = cain

Y =able ;

How to Satisfy a Goal

Here is an informal description of how Prolog satisfies
a goal (like father(adam,X)). Suppose the goal is G:
1.Conjunction: if G = P,Q then first satisfy P, carry
any variable bindings forward to Q, and then satiety
Q.
2.Disjunction: if G = P;Q then satisfy P. If that fails,
then try to satisty Q.
3.Negation: if G = not(P) then try to satisfy P. If this
succeeds, then fail and if it fails, then succeed.
4.Simple goal: if G is a simple goal, then look for a
fact in the DB that unifies with G look for a rule
whose conclusion unifies with G and try to satisfy
its body
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Note

» Two basic conditions are true, which always succeeds, and
fail, which always fails.
* A comma (,) represents conjunction (and) and a semi-colon
represents disjunction (or), as in:
grandParent(X)Y) :- grandFather(X)Y); grandMother(X,Y).
» There’s no real distinction between rules and facts, which are
just rules whose bodies are the trivial condition true. These are
equivalent:
parent(adam,cain)
parent(adam,cain) :- true.
* Goals can be posed with any combination of variables and
constants:
— parent(cain,able) - Is Cain Able's parent?
— parent(cain,X) - Who is a child of Cain?
— parent(X,cain) - Who is Cain a child of?

— parent(X,Y) - What two people have a parent/child relationship? &

Terms

* The term is the basic data structure in Prolog.
* The term is to Prolog what the s-expression is to
Lisp.
* A term is either:
—a constant - €.g.
* john, 13, 3.1415, +, 'a constant'
—a variable - e.g.
* X, Var, , foo
—a compound term - e.g.
* part(arm,body)
* part(arm(john),body(john))

28




Compound Terms

* A compound term can be thought of as a
relation between one or more terms:

pqrt_of(ﬁnger,hand) Term arity
and is written as: f 0

1. the relation name (called the principle f(a) 1
functor) which must be a constant.  f(ab) 2

2. An open parenthesis flg(a).b) 2

3. The arguments - one or more terms
separated by commas.
4. A closing parenthesis.

* The number of arguments of a compound

terms is called its arity. »

The End
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