Prolog 1

Syllogisms

* “Prolog” is all about programming in logic.
— Socrates is a man.
— All men are mortal.
— Therefore, Socrates is mortal.

Facts, rules, and queries

* Fact: Socrates is a man.
man(socrates).

* Rule: All men are mortal.
mortal(X) :- man(X).

* Query: Is Socrates mortal?
mortal(socrates).

Running Prolog |

* Create your "database" (program) in any
editor

 Save it as text only, with a .pl extension

 Here's the complete "program":

man(socrates).
mortal(X) :- man(X).

Running Prolog II

* Prolog is completely interactive.
» Begin by invoking the Prolog interpreter.
— sicstus
* Then load your program.
— consult(‘mortal.pl’)
 Then, ask your question at the prompt:
- mortal(socrates).
* Prolog responds:
- Yes

On gl.umbc.edu

> sicstus
SICStus 3.7.1 ... Licensed to umbc.edu
| 2- consult('mortal pl').

{consulting
/home/faculty4/finin/cmsc/331/fall00/prolog/mortal pl...}

{/home/faculty4/finin/cmsc/331/fall00/prolog/mortal.pl
consulted, 0 msec 624 bytes)}

yes
| 2- mortal(socrates).
yes

| 2- mortal(X).

X = socrates ?

yes

| 2-

Syntax I: Structures or Terms

» Example structures:
- sunshine
- man(socrates)
- path(garden, south, sundial)
* <structure> ::=
<name> | <name> (<arguments>)
* <arguments> :i=
<argument> | <argument> , <arguments>

Syntax II: Base Clauses

* Base clauses are like simple facts.
» Example base clauses:

- debug_on.

- loves(john, mary).

- loves(mary, bill).

- <base clause> ::= <structure> .

Syntax III: Nonbase Clauses
* Non-base clauses are like rules.

* Example non-base clauses:
- mortal(X) :- man(X).
- mortal(X) :- woman(X)
- happy(X) :- healthy(X), wealthy(X), wise(X).
* <nonbase clause> ::=
<structure> :- <structures> .

+ <structures> ::=
<structure> | <structures> , <structure>

Syntax IV: Predicates

* A predicate is a collection of clauses with the
same functor and arity.

loves(john, mary).

loves(mary, bill).

loves(chuck, X) :- female(X), rich(X).
* <predicate> =

<clause> | <predicate> <clause>
* <clause> ::=

<base clause> | <nonbase clause>

Syntax V: Programs

» A program is a collection of predicates.
* Predicates can be in any order.

* Predicates are used in the order in which
they occur.

Syntax VI: Assorted details

* Variables begin with a capital letter or an
underscore:
X, Socrates, _result
* Atomic symbols do not begin with a capital letter:
X, socrates
* Other atomic symbols must be enclosed in single
quotes:
- 'Socrates’
- 'C:/My Documents/examples.pl’

Syntax VII: Assorted details

* In a quoted atom, a single quote must be
quoted or backslashed: ‘Can''t, or won\'t?’

* /* Comments are like this */

* Prolog allows some infix operators, such as :-
(turnstile) and , (comma). These are syntactic
sugar for the functors ':-' and ',".

* These are equivalent:
":-'(mortal(X), man(X)).
mortal(X) :- man(X).

Backtracking

+ loves(chuck, X) :- female(X), rich(X).
- female(jane).

- female(mary).

* rich(mary).

Now, Suppose we ask: loves(chuck, X).

+ female(X) = female(jane), X = jane.

* rich(jane) fails.

- female(X) = female(mary), X = mary.
* rich(mary) succeeds.

Additional answers

- female(jane).
female(mary).
female(susan).

+ ?- female(X).

« X = jane ;
+ X = mary
* Yes

Readings

* loves(chuck, X) :- female(X), rich(X).

* Declarative reading: Chuck loves X if X is
female and rich.

* Approximate procedural reading: To find
an X that Chuck loves, first find a female X,
then check that X is rich.

* Declarative readings are almost always
preferred.

Nonmonotonic logic

Prolog’s facts and rules can be changed at any
time.
assert(man(plato)).
assert((loves(chuck,X) :- female(X), rich(X))).
retract(man(plato)).

retract((loves(chuck,X) :- female(X), rich(X))).

Common problems

* Capitalization is extremely important!
* No space between a functor and its
argument list:
man(socrates), not man (socrates).

» Don’t forget the period! (But you can put it
on the next line.)

A Simple Prolog Model

* Imagine prolog as a system which has a database
composed of two components:

— FACTS - statements about true relations which hold

between particular objects in the world. For example:
parent(adam,able): adam is a parent of able
parent(eve,able): eve is a parent of able
male(adam): adam is male.

— RULES - statements about true relations which hold
between objects in the world which contain
generalizations, expressed through the use of variables.
For example, the rule

father(X,Y) :- parent(X,Y), male(X).
might express:

for any X and any Y, X is the father of Y if X is a parent of Y '
and X is male. ’

Nomenclature and Syntax

* A prolog rule is called a clause.
* A clause has a head, a neck and a body:
father(X,Y) :- parent(X,Y), male(X) .
head neck bOdy
the head is a rule's conclusion.

» The body is a rule's premise or condition.
* note:
—read :- as IF
—read , as AND
— a . marks the end of input 2

Prolog Database

parent(adam,able)
parent(adam,cain) Facts comprising the
male(adam) “extensional database”

Rules comprising the
“intensional database”

21

Extensional vs. Intensional

The terms extensional and Prolog

intensional are borrowed from Database

the language philosophers use parent(adam,able) .

f . / parent(adam,cain) Facts comprising the
or epis temo ogy. male(adam) “extensional database”

 Extension refers to whatever extends, i.e., “is
quantifiable in space as well as in time”.
ules comprising the

« Intension is an antonym of extension, s °
‘intensional database”

referring to “that class of existence which
may be quantifiable in time but not in space.”

« NOT intentional with a “t”, which has to do
with “will, volition, desire, plan, ...”

For KBs and DBs we use Epistemology is “a branch of philosophy
« extensional to refer to that which is explicitly that investigates the origin, nature,
represented (e.g., a fact), and methods, and limits of knowledge”
« intensional to refer to that which is
represented abstractly, e.g., by a rule of »
inference.

A Simple Prolog Session

7 | 7- parent(X,able).
assert(parent(adam,able)).
X =adam ;
yes B _
| 7- assert(parent(eve,able)). X=eve;
yes no
| 2- assert(male(adam)). | 7- parent(X,able) , male(X).
yes X =adam ;
| 7- parent(adam,able). no
yes
| 2- parent(adam,X).
X =able

23
yes

A Prolog Session

| 2- [user]. | 7- mother(eve,Who).
| female(eve). Who = cain
| parent(adam,cain). yes
| parent(eve,cain). | ?- trace, mother(Who,cain).
| father(X,Y) :- parent(X,Y), (2) 1 Call: mother(_0,cain) ?
male(X). (3)2 Call: parent(_0,cain) ?
| mother(X,Y) :- parent(X,Y), (3) 2 Exit: parent(adam,cain)
| AZfemale(X).l 1356 b (4) 2 Call: female(adam) ?
user consulte: ytes .1,
0.0666673 sec. (4)2 Fail: female(adam) .
(3)2 Back to: parent(_0,cain) ?
yes
. (3) 2 Exit: parent(eve,cain)
| 2- mother(Who,cain).
_ (5)2 Call: female(eve) ?
Who = eve .
o (5) 2 Exit: female(eve)
Y (2) 1 Exit: mother(eve,cain)
Who = eve
yes 24

(14)3 Bac

| 2- [user].

| sibling(X,Y) :-

| father(Pa,X),

| father(Pa,Y),

| mother(Ma,X),

| mother(Ma,Y),

| not(X=Y).

~Zuser consulted 152 bytes 0.0500008
sec.

yes

| 2- sibling(X,Y).

X =able

Y =cain ;

X = cain

Y =able ;

How to Satisfy a Goal

Here is an informal description of how Prolog satisfies
a goal (like father(adam,X)). Suppose the goal is G:
1.Conjunction: if G = P,Q then first satisfy P, carry
any variable bindings forward to Q, and then satiety
Q.
2.Disjunction: if G = P;Q then satisfy P. If that fails,
then try to satisty Q.
3.Negation: if G = not(P) then try to satisfy P. If this
succeeds, then fail and if it fails, then succeed.
4.Simple goal: if G is a simple goal, then look for a
fact in the DB that unifies with G look for a rule
whose conclusion unifies with G and try to satisfy
its body

26

Note

» Two basic conditions are true, which always succeeds, and
fail, which always fails.
* A comma (,) represents conjunction (and) and a semi-colon
represents disjunction (or), as in:
grandParent(X)Y) :- grandFather(X)Y); grandMother(X,Y).
» There’s no real distinction between rules and facts, which are
just rules whose bodies are the trivial condition true. These are
equivalent:
parent(adam,cain)
parent(adam,cain) :- true.
* Goals can be posed with any combination of variables and
constants:
— parent(cain,able) - Is Cain Able's parent?
— parent(cain,X) - Who is a child of Cain?
— parent(X,cain) - Who is Cain a child of?

— parent(X,Y) - What two people have a parent/child relationship? &

Terms

* The term is the basic data structure in Prolog.
* The term is to Prolog what the s-expression is to
Lisp.
* A term is either:
—a constant - €.g.
* john, 13, 3.1415, +, 'a constant'
—a variable - e.g.
* X, Var, , foo
—a compound term - e.g.
* part(arm,body)
* part(arm(john),body(john))

28

Compound Terms

* A compound term can be thought of as a
relation between one or more terms:

pqrt_of(ﬁnger,hand) Term arity
and is written as: f 0

1. the relation name (called the principle f(a) 1
functor) which must be a constant. f(ab) 2

2. An open parenthesis flg(a).b) 2

3. The arguments - one or more terms
separated by commas.
4. A closing parenthesis.

* The number of arguments of a compound

terms is called its arity. »

The End

30

