PROGRAMMING IN HASKELL

Chapter 5 - List Comprehensions

Set Comprehensions

In mathematics, the comprehension notation can be used to construct new sets from old sets.

$$
\left\{x^{2} \mid x \in\{1 \ldots 5\}\right\}
$$

The set $\{1,4,9,16,25\}$ of all numbers x^{2} such that x is an element of the set \{1...5\}.

Lists Comprehensions

In Haskell, a similar comprehension notation can be used to construct new lists from old lists.

$$
\left[x^{\wedge} 2 \mid x \leftarrow[1 . .5]\right]
$$

The list [1,4,9,16,25] of all numbers $x^{\wedge} 2$ such that x is an element of the list [1..5].

Note:

\square The expression $x \leftarrow$ [1..5] is called a generator, as it states how to generate values for x .
] Comprehensions can have multiple generators, separated by commas. For example:

$$
\begin{aligned}
& >[(x, y) \mid x \leftarrow[1,2,3], y \leftarrow[4,5]] \\
& {[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]}
\end{aligned}
$$

\square Changing the order of the generators changes the order of the elements in the final list:

$$
\begin{aligned}
& >[(x, y) \mid y \leftarrow[4,5], x \leftarrow[1,2,3]] \\
& {[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]}
\end{aligned}
$$

\square Multiple generators are like nested loops, with later generators as more deeply nested loops whose variables change value more frequently.

For example:
$>[(x, y) \mid y \leftarrow[4,5], x \leftarrow[1,2,3]]$
$[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]$
$x \leftarrow[1,2,3]$ is the last generator, so the value of the x
component of each pair changes most frequently.

Dependant Generators

Later generators can depend on the variables that are introduced by earlier generators.

$$
[(x, y) \mid x \leftarrow[1 . .3], y \leftarrow[x . .3]]
$$

The list $[(1,1),(1,2),(1,3),(2,2),(2,3)$, $(3,3)$]
of all pairs of numbers (x, y) such that x, y are elements of the list [1..3] and

$$
y \geq x
$$

Using a dependant generator we can define the library function that concatenates a list of lists:

$$
\begin{aligned}
& \text { concat : : [[a]] } \rightarrow \text { [a] } \\
& \text { concat xss }=[x \mid x s \leftarrow x s s, x \leftarrow x s]
\end{aligned}
$$

For example:
> concat [[1, 2, 3], [4,5],[6]]
$[1,2,3,4,5,6]$

Guards

List comprehensions can use guards to restrict the values produced by earlier generators.

$$
[x \mid x \leftarrow[1 . .10] \text {, even } x]
$$

The list $[2,4,6,8,10]$ of all numbers x such that x is an element of the list [1..10] and x is even.

Using a guard we can define a function that maps a positive integer to its list of factors:

$$
\begin{aligned}
& \text { factors : : Int } \rightarrow \text { [Int] } \\
& \text { factors } n= \\
& \qquad x \mid x \leftarrow[1 . . n], n \text { mod` } x==0]
\end{aligned}
$$

For example:
> factors 15
$[1,3,5,15]$

A positive integer is prime if its only factors are 1 and itself. Hence, using factors we can define a function that decides if a number is prime:

$$
\begin{aligned}
& \text { prime :: Int } \rightarrow \text { Bool } \\
& \text { prime } \mathrm{n}=\text { factors } \mathrm{n}==[1, \mathrm{n}]
\end{aligned}
$$

For example:

```
> prime 15
False
> prime 7
True
```

Using a guard we can now define a function that returns the list of all primes up to a given limit:

```
primes :: Int -> [Int]
primes n = [x | x \leftarrow [2..n], prime x]
```

For example:
> primes 40
$[2,3,5,7,11,13,17,19,23,29,31,37]$

The Zip Function

A useful library function is zip, which maps two lists to a list of pairs of their
corresponding elements.

$$
\text { zip }::[a] \rightarrow[b] \rightarrow[(a, b)]
$$

For
example:

$$
\begin{aligned}
& \text { > zip ['a','b','c'] [1,2,3,4] } \\
& {\left[\left('^{\prime}, 1\right),(' b ', 2),\left(' c^{\prime}, 3\right)\right]}
\end{aligned}
$$

Using zip we can define a function returns the list of all pairs of adjacent elements from a list:

$$
\begin{aligned}
& \text { pairs :: [a] } \rightarrow \text { [(a,a)] } \\
& \text { pairs xs = zip xs (tail xs) }
\end{aligned}
$$

For example:
> pairs [1,2,3,4]
$[(1,2),(2,3),(3,4)]$

Using pairs we can define a function that decides if the elements in a list are sorted:

$$
\begin{aligned}
& \text { sorted : : Ord } a \Rightarrow[a] \rightarrow \text { Bool } \\
& \text { sorted } x s= \\
& \text { and }[x \leq y \mid(x, y) \leftarrow \text { pairs } x s]
\end{aligned}
$$

For example:
> sorted [1,2,3,4]
True
> sorted [1,3,2,4]
False

Using zip we can define a function that returns the list of all positions of a value in a list:

$$
\begin{aligned}
& \text { positions }:: \text { Eq } a \Rightarrow a \rightarrow[a] \rightarrow \text { [Int] } \\
& \text { positions } x \times s= \\
& \quad\left[i \mid\left(x^{\prime}, i\right) \leftarrow \text { zip xs [0..n], } x==x^{\prime}\right] \\
& \text { where } n=\text { length xs }-1
\end{aligned}
$$

For example:
> positions 0 [1,0,0,1,0,1,1,0]
[1, 2, 4, 7]

String Comprehensions

A string is a sequence of characters enclosed in double quotes. Internally, however, strings are represented as lists of characters.

"abc" :: String

Means ['a','b','c'] :: [Char].

Because strings are just special kinds of lists, any polymorphic function that operates on lists can also be applied to strings. For example:
> length "abcde"
5
> take 3 "abcde"
"abc"
> zip "abc" [1,2,3,4]
[('a', 1), ('b', 2) , ('c', 3)]

Similarly, list comprehensions can also be used to define functions on strings, such as a function that counts the lower-case letters in a string:

$$
\begin{aligned}
& \text { lowers : : String } \rightarrow \text { Int } \\
& \text { lowers } x s= \\
& \text { length }[x \mid x \leftarrow x s \text {, isLower } x]
\end{aligned}
$$

For example:
> lowers "Haskell"
6

Exercises
(1) A triple (x, y, z) of positive integers is called pythagorean if $x^{2}+y^{2}=z^{2}$. Using a list comprehension, define a function

pyths :: Int \rightarrow [(Int, Int, Int)]

that maps an integer n to all such triples with components in [1..n]. For example:
$>$ pyths 5
$[(3,4,5),(4,3,5)]$
(2) A positive integer is perfect if it equals the sum of all of its factors, excluding the number itself. Using a list comprehension, define a function

$$
\text { perfects :: Int } \rightarrow \text { [Int] }
$$

that returns the list of all perfect numbers up to a given limit. For example:
> perfects 500
[6, 28, 496]
(3) The scalar product of two lists of integers xs and ys of length n is give by the sum of the products of the corresponding integers:

$$
\sum_{i=0}^{n-1}\left(x s_{i} * y s_{i}\right)
$$

Using a list comprehension, define a function that returns the scalar product of two lists.

