## PROGRAMMING IN HASKELL



Chapter 3 - Types and Classes

## What is a Type?

A type is a name for a collection of related values. For example, in Haskell the basic type

## Bool

contains the two logical values:

## False <br> True

## Type Errors

Applying a function to one or more arguments of the wrong type is called a type error.
> 1 + False

## Error

1 is a number and False is a logical value, but + requires two numbers.

## Types in Haskell

- If evaluating an expression e would produce a value of type $t$, then e has type $t$, written

```
e :: t
```

- Every well formed expression has a type, which can be automatically calculated at compile time using a process called type inference.
- All type errors are found at compile time, which makes programs safer and faster by removing the need for type checks at run time.
- In GHCi, the :type command calculates the type of an expression, without evaluating it:

```
> not False
True
> :type not False
not False :: Bool
```


## Basic Types

Haskell has a number of basic types, including:

| Bool | - logical values |
| :--- | :--- |
| Char | - single characters |
| String | - strings of characters |
| Int | - fixed-precision integers |
| Integer | - arbitrary-precision integers |
| Float | - floating-point numbers |

## List Types

A list is sequence of values of the same type:

$$
\begin{aligned}
& \text { [False, True,False] :: [Bool] } \\
& \text { ['a','b','c','d'] :: [Char] }
\end{aligned}
$$

In general:
[ $t$ ] is the type of lists with elements of type $t$.

Note:

- The type of a list says nothing about its length:

```
[False,True] :: [Bool]
[False,True,False] :: [Bool]
```

- The type of the elements is unrestricted. For example, we can have lists of lists:
[['a'],['b','c']] :: [[Char]]


## Tuple Types

A tuple is a sequence of values, perhaps of different types:

```
(False,True) :: (Bool,Bool)
(False,'a',True) :: (Bool,Char,Bool)
```

In general:
( $\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tn}$ ) is the type of n -tuples whose ith components have type $t_{\mathrm{i}}$ for any i in $1 . . . n$.

Note:

- The type of a tuple encodes its size:

```
(False,True) :: (Bool,Bool)
(False,True,False) :: (Bool,Bool,Bool)
```

- The type of the components is unrestricted:

$$
\begin{aligned}
& \left(\mathrm{a}^{\prime},(\text { (False, 'b')) :: (Char,(Bool,Char)) }\right. \\
& (\text { True,['a', 'b']) :: (Bool,[Char]) }
\end{aligned}
$$

## Function Types

A function is a mapping from values of one type to values of another type:

```
not :: Bool }->\mathrm{ Bool
isDigit :: Char }->\mathrm{ Bool
```

In general:
$\mathrm{t} 1 \rightarrow \mathrm{t} 2$ is the type of functions that map values of type t1 to values to type t 2 .

Note:

- The arrow $\rightarrow$ is typed at the keyboard as ->.
- The argument and result types are unrestricted. For example, functions with multiple arguments or results are possible using lists or tuples:

```
add :: (Int,Int) }->\mathrm{ Int
add (x,y) = x+y
zeroto :: Int }->\mathrm{ [Int]
zeroto n = [0..n]
```


## Curried Functions

Functions with multiple arguments are also possible by returning functions as results:

$$
\begin{aligned}
& \text { add' }:: ~ I n t \rightarrow(\operatorname{lnt} \rightarrow \operatorname{lnt}) \\
& \text { add' }^{\prime} \mathrm{y}=\mathrm{x}+\mathrm{y}
\end{aligned}
$$


add' takes an integer $x$ and returns a function add' $x$. In turn, this function takes an integer $y$ and returns the result $x+y$.

Note:

- add and add' produce the same final result, but add takes its two arguments at the same time, whereas add' takes them one at a time:

$$
\left.\begin{array}{l}
\text { add }::(\text { Int, Int }) \rightarrow \text { Int } \\
\text { add' }:: ~ I n t ~
\end{array} \text { (Int } \rightarrow \text { Int) }\right) ~ l
$$

- Functions that take their arguments one at a time are called curried functions, celebrating the work of Haskell Curry on such functions.
- Functions with more than two arguments can be curried by returning nested functions:

$$
\text { mult } \quad:: \text { Int } \rightarrow \text { (Int } \rightarrow \text { (Int } \rightarrow \text { Int) })
$$

mult $x y z=x^{*} y^{*} z$
mult takes an integer $x$ and returns a function mult $x$, which in turn takes an integer $y$ and returns a function mult $x y$, which finally takes an integer $z$ and returns the result $x^{*} y^{*} z$.

## Why is Currying Useful?

Curried functions are more flexible than functions on tuples, because useful functions can often be made by partially applying a curried function.

For example:

$$
\begin{aligned}
& \text { add' } 1:: \operatorname{lnt} \rightarrow \operatorname{lnt} \\
& \text { take } 5::[\operatorname{lnt}] \rightarrow[\operatorname{lnt}] \\
& \text { drop } 5::[\operatorname{lnt}] \rightarrow[\operatorname{lnt}]
\end{aligned}
$$

## Currying Conventions

To avoid excess parentheses when using curried functions, two simple conventions are adopted:

- The arrow $\rightarrow$ associates to the right.

$$
\text { Int } \rightarrow \text { Int } \rightarrow \text { Int } \rightarrow \text { Int }
$$



Means Int $\rightarrow$ (Int $\rightarrow$ (Int $\rightarrow$ Int) $)$.

- As a consequence, it is then natural for function application to associate to the left.


## mult x y z

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions in Haskell are normally defined in curried form.

## Polymorphic Functions

A function is called polymorphic ("of many forms") if its type contains one or more type variables.

$$
\text { length :: [a] } \rightarrow \operatorname{lnt}
$$

for any type a, length takes a list of values of type a and returns an integer.

## Note:

- Type variables can be instantiated to different types in different circumstances:

```
> length [False,True]
2
> length [1,2,3,4]
4
```



- Type variables must begin with a lower-case letter, and are usually named a, b, c, etc.
- Many of the functions defined in the standard prelude are polymorphic. For example:

$$
\begin{aligned}
& \text { fst }::(\mathrm{a}, \mathrm{~b}) \rightarrow \mathrm{a} \\
& \text { head }::[\mathrm{a}] \rightarrow \mathrm{a} \\
& \text { take }:: \mathrm{Int} \rightarrow[\mathrm{a}] \rightarrow[\mathrm{a}] \\
& \text { zip }::[\mathrm{a}] \rightarrow[\mathrm{b}] \rightarrow[(\mathrm{a}, \mathrm{~b})] \\
& \text { id }:: \mathrm{a} \rightarrow \mathrm{a}
\end{aligned}
$$

## Overloaded Functions

A polymorphic function is called overloaded if its type contains one or more class constraints.

$$
\text { sum }:: \text { Num } a \rightarrow[a] \rightarrow \text { a }
$$

for any numeric type a, sum takes a list of values of type a and returns a value of type a.

## Note:

- Constrained type variables can be instantiated to any types that satisfy the constraints:
$>\operatorname{sum}[1,2,3]$
6
> sum [1.1,2.2,3.3] 6.6
> sum ['a','b','c']
ERROR


Char is not a numeric type

- Haskell has a number of type classes, including:

Num - Numeric types
Eq - Equality types
Ord - Ordered types

- For example:
(+) $::$ Num $a \rightarrow a \rightarrow a \rightarrow a$
(==) :: Eq a $\rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow$ Bool
(<) :: Ord $\mathrm{a} \Rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow$ Bool


## Hints and Tips

- When defining a new function in Haskell, it is useful to begin by writing down its type;
- Within a script, it is good practice to state the type of every new function defined;
- When stating the types of polymorphic functions that use numbers, equality or orderings, take care to include the necessary class constraints.


## Exercises

(1) What are the types of the following values?

$$
\begin{aligned}
& {\left[{ }^{\prime} a^{\prime},{ }^{\prime} b^{\prime},{ }^{\prime} c^{\prime}\right]} \\
& \left(' a{ }^{\prime}, b^{\prime},{ }^{\prime} c^{\prime}\right) \\
& \text { [(False,'0'),(True,'1')] } \\
& \text { ([False,True],['0','1']) } \\
& \text { [tail,init,reverse] }
\end{aligned}
$$

(2) What are the types of the following functions?

$$
\begin{aligned}
& \text { second } x s \quad=\text { head (tail } x s) \\
& \text { swap }(x, y)=(y, x) \\
& \text { pair } x y=(x, y) \\
& \text { double } x \quad=x^{*} 2 \\
& \text { palindrome } x s=\text { reverse } x s==x s \\
& \text { twice } f x=f(f x)
\end{aligned}
$$

(3) Check your answers using GHCi.

