
Notes

This section is also intended as a bibliography. All the books and papers listed here should
be considered recommended reading.

v Foderaro, John K. Introduction to the Special Lisp Section. CACM 34, 9 (September
1991), p. 27.

viii The final Prolog implementation is 94 lines of code. It uses 90 lines of utilities from
previous chapters. The ATN compiler adds 33 lines, for a total of 217. Since Lisp
has no formal notion of a line, there is a large margin for error when measuring the
length of a Lisp program in lines.

ix Steele, Guy L., Jr. Common Lisp: the Language, 2nd Edition. Digital Press, Bedford
(MA), 1990.

5 Brooks, Frederick P. The Mythical Man-Month. Addison-Wesley, Reading (MA),
1975, p. 16.

18 Abelson, Harold, and Gerald Jay Sussman, with Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, 1985.

21 More precisely, we cannot define a recursive function with a single lambda-expression.
We can, however, generate a recursive function by writing a function to take itself
as an additional argument,

(setq fact

#’(lambda (f n)

(if (= n 0)

1

(* n (funcall f f (- n 1))))))

and then passing it to a function that will return a closure in which original function
is called on itself:

387



388 NOTES

(defun recurser (fn)

#’(lambda (&rest args)

(apply fn fn args)))

Passing fact to this function yields a regular factorial function,

> (funcall (recurser fact) 8)

40320

which could have been expressed directly as:

((lambda (f) #’(lambda (n) (funcall f f n)))

#’(lambda (f n)

(if (= n 0)

1

(* n (funcall f f (- n 1))))))

Many Common Lisp users will find labels or alambda more convenient.

23 Gabriel, Richard P. Performance and Standardization. Proceedings of the First
International Workshop on Lisp Evolution and Standardization, 1988, p. 60.

Testing triangle in one implementation, Gabriel found that “even when the C
compiler is provided with hand-generated register allocation information, the Lisp
code is 17% faster than an iterative C version of this function.” His paper mentions
several other programs which ran faster in Lisp than in C, including one that was
42% faster.

24 If you wanted to compile all the named functions currently loaded, you could do it
by calling compall:

(defun compall ()

(do-symbols (s)

(when (fboundp s)

(unless (compiled-function-p (symbol-function s))

(print s)

(compile s)))))

This function also prints the name of each function as it is compiled.

26 You may be able to see whether inline declarations are being obeyed by calling
(disassemble ’foo), which displays some representation of the object code of
function foo. This is also one way to check whether tail-recursion optimization is
being done.

31 One could imagine nreverse defined as:

(defun our-nreverse (lst)

(if (null (cdr lst))

lst

(prog1 (nr2 lst)

(setf (cdr lst) nil))))



NOTES 389

(defun nr2 (lst)

(let ((c (cdr lst)))

(prog1 (if (null (cdr c))

c

(nr2 c))

(setf (cdr c) lst))))

43 Good design always puts a premium on economy, but there is an additional reason
that programs should be dense. When a program is dense, you can see more of it at
once.
People know intuitively that design is easier when one has a broad view of one’s
work. This is why easel painters use long-handled brushes, and often step back
from their work. This is why generals position themselves on high ground, even if
they are thereby exposed to enemy fire. And it is why programmers spend a lot of
money to look at their programs on large displays instead of small ones.
Dense programs make the most of one’s field of vision. A general cannot shrink a
battle to fit on a table-top, but Lisp allows you to perform corresponding feats of
abstraction in programs. And the more you can see of your program at once, the
more likely it is to turn out as a unified whole.
This is not to say that one should make one’s programs shorter at any cost. If you
take all the newlines out of a function, you can fit it on one line, but this does not
make it easier to read. Dense code means code which has been made smaller by
abstraction, not text-editing.
Imagine how hard it would be to program if you had to look at your code on a
display half the size of the one you’re used to. Making your code twice as dense
will make programming that much easier.

44 Steele, Guy L., Jr. Debunking the “Expensive Procedure Call” Myth or, Procedu-
ral Call Implementations Considered Harmful or, LAMBDA: The Ultimate GOTO.
Proceedings of the National Conference of the ACM, 1977, p. 157.

48 For reference, here are simpler definitions of some of the functions in Figures 4.2
and 4.3. All are substantially (at least 10%) slower:

(defun filter (fn lst)

(delete nil (mapcar fn lst)))

(defun filter (fn lst)

(mapcan #’(lambda (x)

(let ((val (funcall fn x)))

(if val (list val))))

lst))

(defun group (source n)

(if (endp source)

nil

(let ((rest (nthcdr n source)))

(cons (if (consp rest) (subseq source 0 n) source)

(group rest n)))))



390 NOTES

(defun flatten (x)

(mapcan #’(lambda (x)

(if (atom x) (mklist x) (flatten x)))

x))

(defun prune (test tree)

(if (atom tree)

tree

(mapcar #’(lambda (x)

(prune test x))

(remove-if #’(lambda (y)

(and (atom y)

(funcall test y)))

tree))))

49 Written as it is, find2 will generate an error if it runs off the end of a dotted list:

> (find2 #’oddp ’(2 . 3))

>>Error: 3 is not a list.

CLTL2 (p. 31) says that it is an error to give a dotted list to a function expecting a
list. Implementations are not required to detect this error; some do, some don’t.

The situation gets murky with functions that take sequences generally. A dotted
list is a cons, and conses are sequences, so a strict reading of CLTL would seem to
require that

(find-if #’oddp ’(2 . 3))

return nil instead of generating an error, because find-if is supposed to take a
sequence as an argument.

Implementations vary here. Some generate an error anyway, and others return nil.
However, even implementations which follow the strict reading in the case above
tend to deviate in e.g. the case of (concatenate ’cons ’(a . b) ’(c . d)),
which is likely to return (a c . d) instead of (a c).

In this book, the utilities which expect lists expect proper lists. Those which operate
on sequences will accept dotted lists. However, in general it would be asking for
trouble to pass dotted lists to any function that wasn’t specifically intended for use
on them.

66 If we could tell how many parameters each function had, we could write a version of
compose so that, in f◦g, multiple values returned by g would become the correspond-
ing arguments to f. In CLTL2, the new function function-lambda-expression

returns a lambda-expression representing the original source code of a function.
However, it has the option of returning nil, and usually does so for built-in func-
tions. What we really need is a function that would take a function as an argument
and return its parameter list.

73 A version of rfind-if which searches for whole subtrees could be defined as
follows:



NOTES 391

(defun rfind-if (fn tree)

(if (funcall fn tree)

tree

(if (atom tree)

nil

(or (rfind-if fn (car tree))

(and (cdr tree) (rfind-if fn (cdr tree)))))))

The function passed as the first argument would then have to apply to both atoms
and lists:

> (rfind-if (fint #’atom #’oddp) ’(2 (3 4) 5))

3

> (rfind-if (fint #’listp #’cddr) ’(a (b c d e)))

(B C D E)

95 McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin. Lisp 1.5 Programmer’s Manual, 2nd Edition. MIT Press, Cam-
bridge, 1965, pp. 70-71.

106 When Section 8.1 says that a certain kind of operator can only be written as a macro,
it means, can only be written by the user as a macro. Special forms can do everything
macros can, but there is no way to define new ones.

A special form is so called because its evaluation is treated as a special case. In an
interpreter, you could imagine eval as a big cond expression:

(defun eval (expr env)

(cond ...

((eq (car expr) ’quote) (cadr expr))

...

(t (apply (symbol-function (car expr))

(mapcar #’(lambda (x)

(eval x env))

(cdr expr))))))

Most expressions are handled by the default clause, which says to get the function
referred to in the car, evaluate all the arguments in the cdr, and return the result of
applying the former to the latter. However, an expression of the form (quote x)

should not be treated this way: the whole point of a quote is that its argument is not
evaluated. So eval has to have one clause which deals specifically with quote.

Language designers regard special forms as something like constitutional amend-
ments. It is necessary to have a certain number, but the fewer the better. The special
forms in Common Lisp are listed in CLTL2, p. 73.

The preceding sketch of eval is inaccurate in that it retrieves the function before
evaluating the arguments, whereas in Common Lisp the order of these two operations
is deliberately unspecified. For a sketch of eval in Scheme, see Abelson and
Sussman, p. 299.



392 NOTES

115 It’s reasonable to say that a utility function is justified when it pays for itself in
brevity. Utilities written as macros may have to meet a stricter standard. Reading
macro calls can be more difficult than reading function calls, because they can
violate the Lisp evaluation rule. In Common Lisp, this rule says that the value of
an expression is the result of calling the function named in the car on the arguments
given in the cdr, evaluated left-to-right. Since functions all follow this rule, it is no
more difficult to understand a call to find2 than to find-books (page 42).

However, macros generally do not preserve the Lisp evaluation rule. (If one did,
you could have used a function instead.) In principle, each macro defines its own
evaluation rule, and the reader can’t know what it is without reading the macro’s
definition. So a macro, depending on how clear it is, may have to save much more
than its own length in order to justify its existence.

126 The definition of for given in Figure 9.2, like several others defined in this book,
is correct on the assumption that the initforms in a do expression will be evaluated
left-to-right. CLTL2 (p. 165) says that this holds for the stepforms, but says nothing
one way or the other about the initforms.

There is good cause to believe that this is merely an oversight. Usually if the order
of some operations is unspecified, CLTL will say so. And there is no reason that
the order of evaluation of the initforms of a do should be unspecified, since the
evaluation of a let is left-to-right, and so is the evaluation of the stepforms in do

itself.

128 Common Lisp’s gentemp is like gensym except that it interns the symbol it creates.
Like gensym, gentemp maintains an internal counter which it uses to make print
names. If the symbol it wants to create already exists in the current package, it
increments the counter and tries again:

> (gentemp)

T1

> (setq t2 1)

1

> (gentemp)

T3

and so tries to ensure that the symbol created will be unique. However, it is still
possible to imagine name conflicts involving symbols created by gentemp. Though
gentemp can guarantee to produce a symbol not seen before, it cannot foresee what
symbols might be encountered in the future. Since gensyms work perfectly well
and are always safe, why use gentemp? Indeed, for macros the only advantage of
gentemp is that the symbols it makes can be written out and read back in, and in
such cases they are certainly not guaranteed to be unique.

131 The capture of function names would be a more serious problem in Scheme, due to
its single name-space. Not until 1991 did the Scheme standard suggest any official
way of defining macros. Scheme’s current provision for hygienic macros differs
greatly from defmacro. For details, and a bibliography of recent research on the
subject, see the most recent Scheme report.



NOTES 393

137 Miller, Molly M., and Eric Benson. Lisp Style and Design. Digital Press, Bedford
(MA), 1990, p. 86.

158 Instead of writing mvpsetq, it would be cleaner to define an inversion for values.
Then instead of

(mvpsetq (w x) (values y z) ...)

we could say

(psetf (values w x) (values y z) ...)

Defining an inversion for values would also render multiple-value-setq un-
necessary. Unfortunately, as things stand in Common Lisp it is impossible to define
such an inversion; get-setf-method won’t return more than one store variable,
and presumably the expansion function of psetf wouldn’t know what to do with
them if it did.

180 One of the lessons of setf is that certain classes of macros can hide truly enormous
amounts of computation and yet leave the source code perfectly comprehensible.
Eventually setf may be just one of a class of macros for programming with
assertions.

For example, it might be useful to have a macro insist which took certain ex-
pressions of the form (predicate . arguments), and would make them true if they
weren’t already. As setf has to be told how to invert references, this macro would
have to be told how to make expressions true. In the general case, such a macro call
might amount to a call to Prolog.

198 Gelernter, David H., and Suresh Jagannathan. Programming Linguistics. MIT
Press, Cambridge, 1990, p. 305.

199 Norvig, Peter. Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, San Mateo (CA), 1992, p. 856.

213 The constant least-negative-normalized-double-float and its three cousins
have the longest names in Common Lisp, with 38 characters each. The operator
with the longest name is get-setf-method-multiple-value, with 30.

The following expression returns a list, from longest to shortest, of all the symbols
visible in the current package:

(let ((syms nil))

(do-symbols (s)

(push s syms))

(sort syms

#’(lambda (x y)

(> (length (symbol-name x))

(length (symbol-name y))))))

217 As of CLTL2, the expansion function of a macro is supposed to be defined in the
environment where the defmacro expression appears. This should make it possible
to give propmacro the cleaner definition:



394 NOTES

(defmacro propmacro (propname)

‘(defmacro ,propname (obj)

‘(get ,obj ’,propname)))

But CLTL2 does not explicitly state whether the propname form originally passed to
propmacro is part of the lexical environment in which the inner defmacro occurs.
In principle, it seems that if color were defined with (propmacro color), it
should be equivalent to:

(let ((propname ’color))

(defmacro color (obj)

‘(get ,obj ’,propname)))

or

(let ((propname ’color))

(defmacro color (obj)

(list ’get obj (list ’quote propname))))

However, in at least some CLTL2 implementations, the new version of propmacro
does not work.
In CLTL1, the expansion function of a macro was considered to be defined in the null
lexical environment. So for maximum portability, macro definitions should avoid
using the enclosing environment anyway.

238 Functions like match are sometimes described as doing unification. They don’t,
quite; match will successfully match (f ?x) and ?x, but those two expressions
should not unify.
For a description of unification, see: Nilsson, Nils J. Problem-Solving Methods in
Artificial Intelligence. McGraw-Hill, New York, 1971, pp. 175-178.

244 It’s not really necessary to set unbound variables to gensyms, or to call gensym? at
runtime. The expansion-generating code in Figures 18.7 and 18.8 could be written
to keep track of the variables for which binding code had already been generated. To
do this the code would have to be turned inside-out, however: instead of generating
the expansion on the way back up the recursion, it would have to be accumulated
on the way down.

244 A symbol like ?x occurring in the pattern of an if-match always denotes a new
variable, just as a symbol in the car of a let binding clause does. So although Lisp
variables can be used in patterns, pattern variables from outer queries cannot—you
can use the same symbol, but it will denote a new variable. To test that two lists
have the same first element, it wouldn’t work to write:

(if-match (?x . ?rest1) lst1

(if-match (?x . ?rest2) lst2

?x))

In this case, the second ?x is a new variable. If both lst1 and lst2 had at least one
element, this expression would always return the car of lst2.
However, since you can use (non-?ed) Lisp variables in the pattern of an if-match,
you can get the desired effect by writing:



NOTES 395

(if-match (?x . ?rest1) lst1

(let ((x ?x))

(if-match (x . ?rest2) lst2

?x)))

The restriction, and the solution, apply to the with-answer and with-inference

macros defined in Chapters 19 and 24 as well.

254 If it were a problem that “unbound” pattern variables were nil, you could have
them bound to a distinct gensym by saying (defconstant unbound (gensym))

and then replacing the line

‘(,v (binding ’,v ,binds)))

in with-answer with:

‘(,v (aif2 (binding ’,v ,binds) it unbound))

258 Scheme was invented by Guy L. Steele Jr. and Gerald J. Sussman in 1975. The
language is currently defined by: Clinger, William, and Jonathan A. Rees (Eds.).
Revised4 Report on the Algorithmic Language Scheme. 1991.

This report, and various implementations of Scheme, were at the time of printing
available by anonymous FTP from altdorf.ai.mit.edu:pub.

266 As another example of the technique presented in Chapter 16, here is the derivation
of the defmacro template within the definition of =defun:

(defmacro fun (x)

‘(=fun *cont* ,x))

(defmacro fun (x)

(let ((fn ’=fun))

‘(,fn *cont* ,x)))

‘(defmacro ,name ,parms

(let ((fn ’,f))

‘(,fn *cont* ,,@parms)))

‘(defmacro ,name ,parms

‘(,’,f *cont* ,,@parms))

267 If you wanted to see multiple return values in the toplevel, you could say instead:

(setq *cont*

#’(lambda (&rest args)

(if (cdr args) args (car args))))

273 This example is based on one given in: Wand, Mitchell. Continuation-Based
Program Transformation Strategies. JACM 27, 1 (January 1980), pp. 166.



396 NOTES

273 A program to transform Scheme code into continuation-passing style appears in:
Steele, Guy L., Jr. LAMBDA: The Ultimate Declarative. MIT Artificial Intelligence
Memo 379, November 1976, pp. 30-38.

292 These implementations of choose and fail would be clearer in T, a dialect of
Scheme which has push and pop, and allows define in non-toplevel contexts:

(define *paths* ())

(define failsym ’@)

(define (choose choices)

(if (null? choices)

(fail)

(call-with-current-continuation

(lambda (cc)

(push *paths*

(lambda () (cc (choose (cdr choices)))))

(car choices)))))

(call-with-current-continuation

(lambda (cc)

(define (fail)

(if (null? *paths*)

(cc failsym)

((pop *paths*))))))

For more on T, see: Rees, Jonathan A., Norman I. Adams, and James R. Meehan.
The T Manual, 5th Edition. Yale University Computer Science Department, New
Haven, 1988.

The T manual, and T itself, were at the time of printing available by anonymous FTP

from hing.lcs.mit.edu:pub/t3.1.

293 Floyd, Robert W. Nondeterministic Algorithms. JACM 14, 4 (October 1967),
pp. 636-644.

298 The continuation-passing macros defined in Chapter 20 depend heavily on the
optimization of tail calls. Without it they may not work for large problems. For
example, at the time of printing, few computers have enough memory to allow the
Prolog defined in Chapter 24 to run the zebra benchmark without the optimization
of tail calls. (Warning: some Lisps crash when they run out of stack space.)

303 It’s also possible to define a depth-first correct choose that works by explicitly
avoiding circular paths. Here is a definition in T:

(define *paths* ())

(define failsym ’@)

(define *choice-pts* (make-symbol-table))

(define-syntax (true-choose choices)

‘(choose-fn ,choices ’,(generate-symbol t)))



NOTES 397

(define (choose-fn choices tag)

(if (null? choices)

(fail)

(call-with-current-continuation

(lambda (cc)

(push *paths*

(lambda () (cc (choose-fn (cdr choices)

tag))))

(if (mem equal? (car choices)

(table-entry *choice-pts* tag))

(fail)

(car (push (table-entry *choice-pts* tag)

(car choices))))))))

In this version, true-choose becomes a macro. (The T define-syntax is like
defmacro except that the macro name is put in the car of the parameter list.) This
macro expands into a call to choose-fn, a function like the depth-first choose
defined in Figure 22.4, except that it takes an additional tag argument to identify
choice-points. Each value returned by a true-choose is recorded in the global
hash-table *choice-pts*. If a given true-choose is about to return a value it has
already returned, it fails instead. There is no need to change fail itself; we can use
the fail defined on page 396.
This implementation assumes that paths are of finite length. For example, it would
allow path as defined in Figure 22.13 to find a path from a to e in the graph displayed
in Figure 22.11 (though not necessarily a direct one). But the true-choose defined
above wouldn’t work for programs with an infinite search-space:

(define (guess x)

(guess-iter x 0))

(define (guess-iter x g)

(if (= x g)

g

(guess-iter x (+ g (true-choose ’(-1 0 1))))))

With true-choose defined as above, (guess n) would only terminate for non-
positive n.
How we define a correct choose also depends on what we call a choice point. This
version treats each (textual) call to true-choose as a choice point. That might
be too restrictive for some applications. For example, if two-numbers (page 291)
used this version of choose, it would never return the same pair of numbers twice,
even if it was called by several different functions. That might or might not be what
we want, depending on the application.
Note also that this version is intended for use only in compiled code. In interpreted
code, the macro call might be expanded repeatedly, each time generating a new
gensymed tag.

305 Woods, William A. Transition Network Grammars for Natural Language Analysis.
CACM 3, 10 (October 1970), pp. 591-606.



398 NOTES

312 The original ATN system included operators for manipulating registers on the stack
while in a sub-network. These could easily be added, but there is also a more general
solution: to insert a lambda-expression to be applied to the register stack directly
into the code of an arc body. For example, if the node mods (page 316) had the
following line inserted into the body of its outgoing arc,

(defnode mods

(cat n mods/n

((lambda (regs)

(append (butlast regs) (setr a 1 (last regs)))))

(setr mods *)))

then following the arc (however deep) would set the the topmost instance of the
register a (the one visible when traversing the topmost ATN) to 1.

323 If necessary, it would be easy to modify the Prolog to take advantage of an existing
database of facts. The solution would be to make prove (page 336) a nested choose:

(=defun prove (query binds)

(choose

(choose-bind b2 (lookup (car query) (cdr query) binds)

(=values b2))

(choose-bind r *rules*

(=funcall r query binds))))

325 To test quickly whether there is any match for a query, you could use the following
macro:

(defmacro check (expr)

‘(block nil

(with-inference ,expr

(return t))))

344 The examples in this section are translated from ones given in: Sterling, Leon, and
Ehud Shapiro. The Art of Prolog: Advanced Programming Techniques. MIT Press,
Cambridge, 1986.

349 The lack of a distinct name for the concepts underlying Lisp may be a serious
barrier to the language’s acceptance. Somehow one can say “We need to use C++
because we want to do object-oriented programming,” but it doesn’t sound nearly as
convincing to say “We need to use Lisp because we want to do Lisp programming.”

To administrative ears, this sounds like circular reasoning. Such ears would rather
hear that Lisp’s value hinged on a single, easily understood concept. For years we
have tried to oblige them, with little success. Lisp has been described as a “list-
processing language,” a language for “symbolic computation,” and most recently, a
“dynamic language.” None of these phrases captures more than a fraction of what
Lisp is about. When retailed through college textbooks on programming languages,
they become positively misleading.

Efforts to sum up Lisp in a single phrase are probably doomed to failure, because the
power of Lisp arises from the combination of at least five or six features. Perhaps



NOTES 399

we should resign ourselves to the fact that the only accurate name for what Lisp
offers is Lisp.

352 For efficiency, sort doesn’t guarantee to preserve the order of sequence elements
judged equal by the function given as the second argument. For example, a valid
Common Lisp implementation could do this:

> (let ((v #((2 . a) (3 . b) (1 . c) (1 . d))))

(sort (copy-seq v) #’< :key #’car))

#((1 . D) (1 . C) (2 . A) (3 . B))

Note that the relative order of the first two elements has been reversed.

The built-in stable-sort provides a way of sorting which won’t reorder equal
elements:

> (let ((v #((2 . a) (3 . b) (1 . c) (1 . d))))

(stable-sort (copy-seq v) #’< :key #’car))

#((1 . C) (1 . D) (2 . A) (3 . B))

It is a common error to assume that sort works like stable-sort. Another
common error is to assume that sort is nondestructive. In fact, both sort and
stable-sort can alter the sequence they are told to sort. If you don’t want this to
happen, you should sort a copy. The call to stable-sort in get-ancestors is
safe because the list to be sorted has been freshly made.



400 NOTES




