
Appendix: Packages

Packages are Common Lisp’s way of grouping code into modules. Early dialects
of Lisp contained a symbol-table, called the oblist, which listed all the symbols
read so far by the system. Through a symbol’s entry on the oblist, the system had
access to things like its value and its property list. A symbol listed in the oblist
was said to be interned.

Recent dialects of Lisp have split the concept of the oblist into multiple
packages. Now a symbol is not merely interned, but interned in a particular
package. Packages support modularity because symbols interned in one package
are only accessible in other packages (except by cheating) if they are explicitly
declared to be so.

A package is a kind of Lisp object. The current package is always stored
in the global variable *package*. When Common Lisp starts up, the current
package will be the user package: either user (in CLTL1 implementations), or
common-lisp-user (in CLTL2 implementations).

Packages are usually identified by their names, which are strings. To find the
name of the current package, try:

> (package-name *package*)
"COMMON-LISP-USER"

Usually a symbol is interned in the package that was current at the time
it was read. To find the package in which a symbol is interned, we can use
symbol-package:

> (symbol-package ’foo)
#<Package "COMMON-LISP-USER" 4CD15E>

381



382 APPENDIX

The return value here is the actual package object. For future use, let’s give foo
a value:

> (setq foo 99)
99

By calling in-package we can switch to a new package, creating it if
necessary:1

> (in-package ’mine :use ’common-lisp)
#<Package "MINE" 63390E>

At this point there should be eerie music, because we are in a different world: foo
here is not what it used to be.

MINE> foo
>>Error: FOO has no global value.

Why did this happen? Because the foo we set to 99 above is a distinct symbol
fromfoohere inmine.2 To refer to the originalfoo from outside the user package,
we must prefix the package name and two colons:

MINE> common-lisp-user::foo
99

So different symbols with the same print-name can coexist in different pack-
ages. There can be one foo in package common-lisp-user and another foo in
package mine, and they will be distinct symbols. In fact, that’s partly the point of
packages: if you’re writing your program in a separate package, you can choose
names for your functions and variables without worrying that someone will use
the same name for something else. Even if they use the same name, it won’t be
the same symbol.

Packages also provide a means of information-hiding. Programs must refer to
functions and variables by their names. If you don’t make a given name available
outside your package, it becomes unlikely that code in another package will be
able to use or modify what it refers to.

In programs it’s usually bad style to use package prefixes with double colons.
By doing so you are violating the modularity that packages are supposed to
provide. If you have to use a double colon to refer to a symbol, it’s because
someone didn’t want you to.

1In older implementations of Common Lisp, omit the :use argument.
2Some implementations of Common Lisp print the package name before the toplevel prompt

whenever we are not in the user package. This is not required, but it is a nice touch.



PACKAGES 383

Usually one should only refer to symbols which have been exported. By
exporting a symbol from the package in which it is interned, we cause it to be
visible to other packages. To export a symbol we call (you guessed it) export:

MINE> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (export ’bar)
T
> (setq bar 5)
5

Now when we return to mine, we can refer to bar with only a single colon,
because it is a publicly available name:

> (in-package ’mine)
#<Package "MINE" 63390E>
MINE> common-lisp-user:bar
5

By importing bar into mine we can go one step further, and make mine actually
share the symbol bar with the user package:

MINE> (import ’common-lisp-user:bar)
T
MINE> bar
5

After importing bar we can refer to it without any package qualifier at all. The
two packages now share the same symbol; there can’t be a distinct mine:bar.

What if there already was one? In that case, the call to import would have
caused an error, as we see if we try to import foo:

MINE> (import ’common-lisp-user::foo)
>>Error: FOO is already present in MINE.

Before, when we tried unsuccessfully to evaluate foo in mine, we thereby caused
a symbol foo to be interned there. It had no global value and therefore generated
an error, but the interning happened simply as a consequence of typing its name.
So now when we try to import foo into mine, there is already a symbol there with
the same name.

We can also import symbols en masse by defining one package to use another:

MINE> (use-package ’common-lisp-user)
T



384 APPENDIX

Now all symbols exported by the user package will automatically be imported by
mine. (If foo had been exported by the user package, this call would also have
generated an error.)

As of CLTL2, the package containing the names of built-in operators and
variables is called common-lisp instead of lisp, and new packages no longer
use it by default. Since we used this package in the call to in-package which
created mine, all of Common Lisp’s names will be visible here:

MINE> #’cons
#<Compiled-Function CONS 462A3E>

You’re practically compelled to make any new package use common-lisp (or
some other package containing Lisp operators). Otherwise you wouldn’t even be
able to get out of the new package.

As with compilation, operations on packages are not usually done at the
toplevel like this. More often the calls are contained in source files. Generally
it will suffice to begin a file with an in-package and a defpackage. (The
defpackagemacro is new in CLTL2, but some older implementations provide it.)
Here is what you might put at the top of a file containing a distinct package of
code:

(in-package ’my-application :use ’common-lisp)

(defpackage my-application
(:use common-lisp my-utilities)
(:nicknames app)
(:export win lose draw))

This will cause the code in the file—or more precisely, the names in the file—to
be in the package my-application. As well as common-lisp, this package uses
my-utilities, so any symbols exported thence can appear without any package
prefix in the file.

The my-application package itself exports just three symbols: win, lose,
and draw. Since the call to in-package gave my-application the nickname
app, code in other packages will be able to refer to them as e.g. app:win.

The kind of modularity provided by packages is actually a bit odd. We have
modules not of objects, but of names. Every package that uses common-lisp
imports the name cons, because common-lisp includes a function with that
name. But in consequence a variable called cons would also be visible every
package that used common-lisp. And the same thing goes for Common Lisp’s
other name-spaces. If packages are confusing, this is the main reason why; they’re
not based on objects, but on names.



PACKAGES 385

Things having to do with packages tend to happen at read-time, not runtime,
which can lead to some confusion. The second expression we typed:

(symbol-package ’foo)

returned the value it did because reading the query created the answer. To evaluate
this expression, Lisp had to read it, which meant interning foo.

As another example, consider this exchange, which appeared above:

MINE> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (export ’bar)

Usually two expressions typed into the toplevel are equivalent to the same two
expressions enclosed within a single progn. Not in this case. If we try saying

MINE> (progn (in-package ’common-lisp-user)
(export ’bar))

>>Error: MINE::BAR is not accessible in COMMON-LISP-USER.

we get an error instead. This happens because the whole progn expression is
processed by read before being evaluated. When read is called, the current
package is mine, so bar is taken to be mine:bar. It is as if we had asked to
export this symbol, instead of common-lisp-user:bar, from the user package.

The way packages are defined makes it a nuisance to write programs which
use symbols as data. For example, if we define noise as follows:

(in-package ’other :use ’common-lisp)
(defpackage other

(:use common-lisp)
(:export noise))

(defun noise (animal)
(case animal
(dog ’woof)
(cat ’meow)
(pig ’oink)))

then if we call noise from another package with an unqualified symbol as an
argument, it will usually fall off the end of the case clauses and return nil:

OTHER> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (other:noise ’pig)
NIL



386 APPENDIX

That’s because what we passed as an argument was common-lisp-user:pig (no
offense intended), while the case key is other:pig. To make noise work as
one would expect, we would have to export all six symbols used within it, and
import them into any package from which we intended to call noise.

In this case, we could evade the problem by using keywords instead of ordinary
symbols. If noise had been defined

(defun noise (animal)
(case animal
(:dog :woof)
(:cat :meow)
(:pig :oink)))

then we could safely call it from any package:

OTHER> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (other:noise :pig)
:OINK

Keywords are like gold: universal and self-evaluating. They are visible every-
where, and they never have to be quoted. A symbol-driven function like defanaph
(page 223) should nearly always be written to use keywords.

Packages are a rich source of confusion. This introduction to the subject has
barely scratched the surface. For all the details, see CLTL2, Chapter 11.




