
22

Nondeterminism

Programming languages save us from being swamped by a mass of detail. Lisp is
a good language because it handles so many details itself, enabling programmers
to make the most of their limited tolerance for complexity. This chapter describes
how macros can make Lisp handle another important class of details: the details
of transforming a nondeterministic algorithm into a deterministic one.

This chapter is divided into five parts. The first explains what nondeterminism
is. The second describes a Scheme implementation of nondeterministic choose and
fail which uses continuations. The third part presents Common Lisp versions of
choose and fail which build upon the continuation-passing macros of Chapter 20.
The fourth part shows how the cut operator can be understood independently
of Prolog. The final part suggests refinements of the original nondeterministic
operators.

The nondeterministic choice operators defined in this chapter will be used to
write an ATN compiler in Chapter 23 and an embedded Prolog in Chapter 24.

22.1 The Concept

A nondeterministic algorithm is one which relies on a certain sort of supernatural
foresight. Why talk about such algorithms when we don’t have access to computers
with supernatural powers? Because a nondeterministic algorithm can be simulated
by a deterministic one. For purely functional programs—that is, those with
no side-effects—simulating nondeterminism is particularly straightforward. In
purely functional programs, nondeterminism can be implemented by search with
backtracking.

286



22.1 THE CONCEPT 287

This chapter shows how to simulate nondeterminism in functional programs.
If we have a simulator for nondeterminism, we can expect it to produce results
whenever a truly nondeterministic machine would. In many cases, writing a
program which depends on supernatural insight to solve a problem is easier than
writing one which doesn’t, so such a simulator would be a good thing to have.

In this section we will define the class of powers that nondeterminism allows
us; the next section demonstrates their utility in some sample programs. The
examples in these first two sections are written in Scheme. (Some differences
between Scheme and Common Lisp are summarized on page 259.)

A nondeterministic algorithm differs from a deterministic one because it can
use the two special operators choose and fail. Choose is a function which takes a
finite set and returns one element. To explain how choose chooses, we must first
introduce the concept of a computational future.

Here we will represent choose as a function choose which takes a list and
returns one element. For each element, there is a set of futures the computation
could have if that element were chosen. In the following expression

(let ((x (choose ’(1 2 3))))
(if (odd? x)

(+ x 1)
x))

there are three possible futures for the computation when it reaches the point of
the choose:

1. If choose returns 1, the computation will go through the then-clause of the
if, and will return 2.

2. If choose returns 2, the computation will go through the else-clause of the
if, and will return 2.

3. If choose returns 3, the computation will go through the then-clause of the
if, and will return 4.

In this case, we know exactly what the future of the computation will be as soon
as we see what choose returns. In the general case, each choice is associated with
a set of possible futures, because within some futures there could be additional
chooses. For example, with

(let ((x (choose ’(2 3))))
(if (odd? x)

(choose ’(a b))
x))



288 NONDETERMINISM

there are two sets of futures at the time of the first choose:

1. If choose returns 2, the computation will go through the else-clause of the
if, and will return 2.

2. If choose returns 3, the computation will go through the then-clause of
the if. At this point, the path of the computation splits into two possible
futures, one in which a is returned, and one in which b is.

The first set has one future and the second set has two, so the computation has
three possible futures.

The point to remember is, if choose is given a choice of several alternatives,
each one is associated with a set of possible futures. Which choice will it return?
We can assume that choose works as follows:

1. It will only return a choice for which some future does not contain a call to
fail.

2. A choose over zero alternatives is equivalent to a fail.

So, for example, in

(let ((x (choose ’(1 2))))
(if (odd? x)

(fail)
x))

each of the possible choices has exactly one future. Since the future for a choice
of 1 contains a call to fail, only 2 can be chosen. So the expression as a whole
is deterministic: it always returns 2.

However, the following expression is not deterministic:

(let ((x (choose ’(1 2))))
(if (odd? x)

(let ((y (choose ’(a b))))
(if (eq? y ’a)

(fail)
y))

x))

At the first choose, there are two possible futures for a choice of 1, and one for a
choice of 2. Within the former, though, the future is really deterministic, because
a choice of a would result in a call to fail. So the expression as a whole could
return either b or 2.

Finally, there is only one possible value for the expression



22.2 THE CONCEPT 289

(let ((x (choose ’(1 2))))
(if (odd? x)

(choose ’())
x))

because if 1 is chosen, the future goes through a choose with no choices. This
example is thus equivalent to the last but one.

It may not be clear yet from the preceding examples, but we have just got
ourselves an abstraction of astounding power. In nondeterministic algorithms we
are allowed to say “choose an element such that nothing we do later will result in a
call to fail.” For example, this is a perfectly legitimate nondeterministic algorithm
for discovering whether you have a known ancestor called Igor:

Function Ig(n)
if name(n) = ‘Igor’

then return n
else if parents(n)

then return Ig(choose(parents(n)))
else fail

The fail operator is used to influence the value returned by choose. If we
ever encounter a fail, choose would have chosen incorrectly. By definition choose
guesses correctly. So if we want to guarantee that the computation will never
pursue a certain path, all we need do is put a fail somewhere in it, and that path
will never be followed. Thus, as it works recursively through generations of
ancestors, the function Ig is able to choose at each step a path which leads to an
Igor—to guess whether to follow the mother’s or father’s line.

It is as if a program can specify that choose pick some element from a set of
alternatives, use the value returned by choose for as long as it wants, and then
retroactively decide, by using fail as a veto, what it wants choose to have picked.
And, presto, it turns out that that’s just what choose did return. Hence the model
in which choose has foresight.

In reality choose cannot have supernatural powers. Any implementation of
choose must simulate correct guessing by backtracking when it discovers mistakes,
like a rat finding its way through a maze. But all this backtracking can be done
beneath the surface. Once you have some form of choose and fail, you get to write
algorithms like the one above, as if it really were possible to guess what ancestor
to follow. By using choose it is possible to write an algorithm to search some
problem space just by writing an algorithm to traverse it.



290 NONDETERMINISM

(define (descent n1 n2)
(if (eq? n1 n2)

(list n2)
(let ((p (try-paths (kids n1) n2)))

(if p (cons n1 p) #f))))

(define (try-paths ns n2)
(if (null? ns)

#f
(or (descent (car ns) n2)

(try-paths (cdr ns) n2))))

Figure 22.1: Deterministic tree search.

(define (descent n1 n2)
(cond ((eq? n1 n2) (list n2))

((null? (kids n1)) (fail))
(else (cons n1 (descent (choose (kids n1)) n2)))))

Figure 22.2: Nondeterministic tree search.

22.2 Search

Many classic problems can be formulated as search problems, and for such prob-
lems nondeterminism often turns out to be a useful abstraction. Suppose nodes
is bound to a list of nodes in a tree, and (kids n) is a function which returns
the descendants of node n, or #f if there are none. We want to write a function
(descent n1 n2) which returns a list of nodes on some path from n 1 to its de-
scendant n2, if there is one. Figure 22.1 shows a deterministic version of this
function.

Nondeterminism allows the programmer to ignore the details of finding a path.
It’s possible simply to tell choose to find a node n such that there is a path from
n to our destination. Using nondeterminism we can write the simpler version of
descent shown in Figure 22.2.

The version shown in Figure 22.2 does not explicitly search for a node on the
right path. It is written on the assumption that choose has chosen an n with the
desired properties. If we are used to looking at deterministic programs, we may
not perceive that choose has to work as if it could guess what n would make it



22.2 SEARCH 291

(define (two-numbers)
(list (choose ’(0 1 2 3 4 5))

(choose ’(0 1 2 3 4 5))))

(define (parlor-trick sum)
(let ((nums (two-numbers)))
(if (= (apply + nums) sum)

‘(the sum of ,@nums)
(fail))))

Figure 22.3: Choice in a subroutine.

through the computation which follows without failing.
Perhaps a more convincing example of the power of choose is its ability to

guess what will happen even in calling functions. Figure 22.3 contains a pair
of functions to guess two numbers which sum to a number given by the caller.
The first function, two-numbers, nondeterministically chooses two numbers and
returns them in a list. When we call parlor-trick, it calls two-numbers for a
list of two integers. Note that, in making its choice, two-numbers doesn’t have
access to the number entered by the user.

If the two numbers guessed by choose don’t sum to the number entered by the
user, the computation fails. We can rely on choose having avoided computational
paths which fail, if there are any which don’t. Thus we can assume that if the
caller gives a number in the right range, choosewill have guessed right, as indeed
it does:1

> (parlor-trick 7)
(THE SUM OF 2 5)

In simple searches, the built-in Common Lisp function find-if would do
just as well. Where is the advantage of nondeterministic choice? Why not just
iterate through the list of alternatives in search of the element with the desired
properties? The crucial difference between choose and conventional iteration is
that its extent with respect to fails is unbounded. Nondeterministic choose can
see arbitrarily far into the future; if something is going to happen at any point in
the future which would have invalidated some guess choose might make, we can
assume that choose knows to avoid guessing it. As we saw in parlor-trick,

1Since the order of argument evaluation is unspecified in Scheme (as opposed to Common Lisp,
which specifies left-to-right), this call might also return (THE SUM OF 5 2).



292 NONDETERMINISM

the fail operator works even after we return from the function in which the choose
occurs.

This kind of failure happens in the search done by Prolog, for example.
Nondeterminism is useful in Prolog because one of the central features of this
language is its ability to return answers to a query one at a time. By following
this course instead of returning all the valid answers at once, Prolog can handle
recursive rules which would otherwise yield infinitely large sets of answers.

The initial reaction to descentmay be like the initial reaction to a merge sort:
where does the work get done? As in a merge sort, the work gets done implicitly,
but it does get done. Section 22.3 describes an implementation of choose in which
all the code examples presented so far are real running programs.

These examples show the value of nondeterminism as an abstraction. The best
programming language abstractions save not just typing, but thought. In automata
theory, some proofs are difficult even to conceive of without relying on nonde-
terminism. A language which allows nondeterminism may give programmers a
similar advantage.

22.3 Scheme Implementation

This section explains how to use continuations to simulate nondeterminism. Fig-
ure 22.4 contains Scheme implementations of choose and fail. Beneath the surface,◦
choose and fail simulate nondeterminism by backtracking. A backtracking
search program must somehow store enough information to pursue other alterna-
tives if the chosen one fails. This information is stored in the form of continuations
on the global list *paths*.

The function choose is passed a list of alternatives in choices. If choices is
empty, then choose calls fail, which sends the computation back to the previous
choose. If choices is (first . rest), choose first pushes onto *paths* a
continuation in which choose is called on rest, then returns first.

The function fail is simpler: it just pops a continuation off *paths* and
calls it. If there aren’t any saved paths left, then fail returns the symbol @.
However, it won’t do simply to return it as a function ordinarily returns values, or
it will be returned as the value of the most recent choose. What we really want to
do is return @ right to the toplevel. We do this by binding cc to the continuation
where fail is defined, which presumably is the toplevel. By calling cc, fail
can return straight there.

The implementation in Figure 22.4 treats *paths* as a stack, always fail-
ing back to the most recent choice point. This strategy, known as chronological
backtracking, results in depth-first search of the problem space. The word “non-
determinism” is often used as if it were synonymous with the depth-first imple-



22.4 SCHEME IMPLEMENTATION 293

(define *paths* ())
(define failsym ’@)

(define (choose choices)
(if (null? choices)

(fail)
(call-with-current-continuation

(lambda (cc)
(set! *paths*

(cons (lambda ()
(cc (choose (cdr choices))))

*paths*))
(car choices)))))

(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail

(lambda ()
(if (null? *paths*)

(cc failsym)
(let ((p1 (car *paths*)))
(set! *paths* (cdr *paths*))
(p1)))))))

Figure 22.4: Scheme implementation of choose and fail.

mentation. Floyd’s classic paper on nondeterministic algorithms uses the term in ◦
this sense, and this is also the kind of nondeterminism we find in nondetermin-
istic parsers and in Prolog. However, it should be noted that the implementation
given in Figure 22.4 is not the only possible implementation, nor even a correct
one. In principle, choose ought to be able to choose an object which meets any
computable specification. But a program which used these versions of choose
and fail to search a graph might not terminate, if the graph contained cycles.

In practice, nondeterminism usually means using a depth-first implementation
equivalent to the one in Figure 22.4, and leaving it to the user to avoid loops in
the search space. However, for readers who are interested, the last section in this
chapter describes how to implement true choose and fail.



294 NONDETERMINISM

22.4 Common Lisp Implementation

This section describes how to write a form of choose and fail in Common Lisp.
As the previous section showed, call/ccmakes it easy to simulate nondetermin-
ism in Scheme. Continuations provide the direct embodiment of our theoretical
concept of a computational future. In Common Lisp, we can use instead the
continuation-passing macros of Chapter 20. With these macros we will be able to
provide a form of choose slightly uglier than the Scheme version presented in the
previous section, but equivalent in practice.

Figure 22.5 contains a Common Lisp implementation of fail, and two versions
of choose. The syntax of a Common Lisp choose is slightly different from the
Scheme version. The Scheme choose took one argument: a list of choices from
which to select a value. The Common Lisp version has the syntax of a progn.
It can be followed by any number of expressions, from which it chooses one to
evaluate:

> (defun do2 (x)
(choose (+ x 2) (* x 2) (expt x 2)))

DO2
> (do2 3)
5
> (fail)
6

At the toplevel, we see more clearly the backtracking which underlies nondeter-
ministic search. The variable *paths* is used to store paths which have not yet
been followed. When the computation reaches a choose expression with several
alternatives, the first alternative is evaluated, and the remaining choices are stored
on *paths*. If the program later on encounters a fail, the last stored choice
will be popped off *paths* and restarted. When there are no more paths left to
restart, fail returns a special value:

> (fail)
9
> (fail)
@

In Figure 22.5 the constant failsym, which represents failure, is defined to be
the symbol @. If you wanted to be able to have @ as an ordinary return value, you
could make failsym a gensym instead.

The other nondeterministic choice operator, choose-bind, has a slightly
different form. It should be given a symbol, a list of choices, and a body of code.
It will do a choose on the list of choices, bind the symbol to the value chosen, and
evaluate the body of code:



22.4 COMMON LISP IMPLEMENTATION 295

(defparameter *paths* nil)
(defconstant failsym ’@)

(defmacro choose (&rest choices)
(if choices

‘(progn
,@(mapcar #’(lambda (c)

‘(push #’(lambda () ,c) *paths*))
(reverse (cdr choices)))

,(car choices))
’(fail)))

(defmacro choose-bind (var choices &body body)
‘(cb #’(lambda (,var) ,@body) ,choices))

(defun cb (fn choices)
(if choices

(progn
(if (cdr choices)

(push #’(lambda () (cb fn (cdr choices)))
*paths*))

(funcall fn (car choices)))
(fail)))

(defun fail ()
(if *paths*

(funcall (pop *paths*))
failsym))

Figure 22.5: Nondeterministic operators in Common Lisp.

> (choose-bind x ’(marrakesh strasbourg vegas)
(format nil "Let’s go to ~A." x))

"Let’s go to MARRAKESH."
> (fail)
"Let’s go to STRASBOURG."

It is only for convenience that the Common Lisp implementation provides two
choice operators. You could get the effect of choose from choose-bind by
always translating

(choose (foo) (bar))



296 NONDETERMINISM

into

(choose-bind x ’(1 2)
(case x
(1 (foo))
(2 (bar))))

but programs are easier to read if we have a separate operator for this case. 2

The Common Lisp choice operators store the bindings of relevant variables
using closures and variable capture. As macros, choose and choose-bind get
expanded within the lexical environment of the containing expressions. Notice
that what they push onto *paths* is a closure over the choice to be saved, locking
in all the bindings of the lexical variables referred to within it. For example, in
the expression

(let ((x 2))
(choose
(+ x 1)
(+ x 100)))

the value of x will be needed when the saved choices are restarted. This is why
choose is written to wrap its arguments in lambda-expressions. The expression
above gets macroexpanded into:

(let ((x 2))
(progn
(push #’(lambda () (+ x 100))

*paths*)
(+ x 1)))

The object which gets stored on *paths* is a closure containing a pointer to x. It
is the need to preserve variables in closures which dictates the difference between
the syntax of the Scheme and Common Lisp choice operators.

If we use choose and fail together with the continuation-passing macros
of Chapter 20, a pointer to our continuation variable *cont* will get saved as
well. By defining functions with =defun, calling them with =bind, and having
them return values with =values, we will be able to use nondeterminism in any
Common Lisp program.

With these macros, we can successfully run the example in which the nonde-
terministic choice occurs in a subroutine. Figure 22.6 shows the Common Lisp
version of parlor-trick, which works as it did in Scheme:

2If desired, the exported interface to this code could consist of just a single operator, because
(fail) is equivalent to (choose).



22.4 COMMON LISP IMPLEMENTATION 297

(=defun two-numbers ()
(choose-bind n1 ’(0 1 2 3 4 5)
(choose-bind n2 ’(0 1 2 3 4 5)
(=values n1 n2))))

(=defun parlor-trick (sum)
(=bind (n1 n2) (two-numbers)
(if (= (+ n1 n2) sum)

‘(the sum of ,n1 ,n2)
(fail))))

Figure 22.6: Common Lisp choice in a subroutine.

> (parlor-trick 7)
(THE SUM OF 2 5)

This works because the expression

(=values n1 n2)

gets macroexpanded into

(funcall *cont* n1 n2)

within the choose-binds. Each choose-bind is in turn macroexpanded into a
closure, which keeps pointers to all the variables referred to in the body, including
*cont*.

The restrictions on the use of choose, choose-bind, and fail are the same
as the restrictions given in Figure 20.5 for code which uses the continuation-
passing macros. Where a choice expression occurs, it must be the last thing to
be evaluated. Thus if we want to make sequential choices, in Common Lisp the
choices have to be nested:

> (choose-bind first-name ’(henry william)
(choose-bind last-name ’(james higgins)

(=values (list first-name last-name))))
(HENRY JAMES)
> (fail)
(HENRY HIGGINS)
> (fail)
(WILLIAM JAMES)



298 NONDETERMINISM

which will, as usual, result in depth-first search.
The operators defined in Chapter 20 claimed the right to be the last expressions

evaluated. This right is now preempted by the new layer of macros; an =values
expression should appear within a choose expression, and not vice versa. That
is,

(choose (=values 1) (=values 2))

will work, but

(=values (choose 1 2)) ; wrong

will not. (In the latter case, the expansion of the choose would be unable to
capture the instance of *cont* in the expansion of the =values.)

As long as we respect the restrictions outlined here and in Figure 20.5, non-
deterministic choice in Common Lisp will now work as it does in Scheme. Fig-
ure 22.7 shows a Common Lisp version of the nondeterministic tree search pro-
gram given in Figure 22.2. The Common Lisp descent is a direct translation,
though it comes out slightly longer and uglier.

We now have Common Lisp utilities which make it possible to do nondeter-
ministic search without explicit backtracking. Having taken trouble to write this
code, we can reap the benefits by writing in very few lines programs which would
otherwise be large and messy. By building another layer of macros on top of
those presented here, we will be able to write an ATN compiler in one page of code
(Chapter 23), and a sketch of Prolog in two (Chapter 24).

Common Lisp programs which use choose should be compiled with tail-
recursion optimization—not just to make them faster, but to avoid running out of
stack space. Programs which “return” values by calling continuation functions
never actually return until the final fail. Without the optimization of tail-calls,
the stack would just grow and grow.◦

22.5 Cuts

This section shows how to use cuts in Scheme programs which do nondetermin-
istic choice. Though the word cut comes from Prolog, the concept belongs to
nondeterminism generally. You might want to use cuts in any program that made
nondeterministic choices.

Cuts are easier to understand when considered independently of Prolog. Let’s
imagine a real-life example. Suppose that the manufacturer of Chocoblob candies
decides to run a promotion. A small number of boxes of Chocoblobs will also
contain tokens entitling the recipient to valuable prizes. To ensure fairness, no
two of the winning boxes are sent to the same city.



22.5 CUTS 299

> (=defun descent (n1 n2)
(cond ((eq n1 n2) (=values (list n2)))

((kids n1) (choose-bind n (kids n1)
(=bind (p) (descent n n2)

(=values (cons n1 p)))))
(t (fail))))

DESCENT
> (defun kids (n)

(case n
(a ’(b c))
(b ’(d e))
(c ’(d f))
(f ’(g))))

KIDS
> (descent ’a ’g)
(A C F G)
> (fail)
@
> (descent ’a ’d)
(A B D)
> (fail)
(A C D)
> (fail)
@
> (descent ’a ’h)
@

Figure 22.7: Nondeterministic search in Common Lisp

After the promotion has begun, it emerges that the tokens are small enough to
be swallowed by children. Hounded by visions of lawsuits, Chocoblob lawyers
begin a frantic search for all the special boxes. Within each city, there are multiple
stores that sell Chocoblobs; within each store, there are multiple boxes. But the
lawyers may not have to open every box: once they find a coin-containing box in
a given city, they do not have to search any of the other boxes in that city, because
each city has at most one special box. To realize this is to do a cut.

What’s cut is a portion of the search tree. For Chocoblobs, the search tree
exists physically: the root node is at the company’s head office; the children of this
node are the cities where the special boxes were sent; the children of those nodes
are the stores in each city; and the children of each store represent the boxes in



300 NONDETERMINISM

(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(newline)
(let* ((store (choose ’(1 2)))

(box (choose ’(1 2))))
(let ((triple (list city store box)))

(display triple)
(if (coin? triple)

(display ’c))
(fail)))))

(define (coin? x)
(member x ’((la 1 2) (ny 1 1) (bos 2 2))))

Figure 22.8: Exhaustive Chocoblob search.

that store. When the lawyers searching this tree find one of the boxes containing
a coin, they can prune off all the unexplored branches descending from the city
they’re in now.

Cuts actually take two operations: you can do a cut when you know that part
of the search tree is useless, but first you have to mark the tree at the point where
it can be cut. In the Chocoblob example, common sense tells us that the tree is
marked as we enter each city. It’s hard to describe in abstract terms what a Prolog
cut does, because the marks are implicit. With an explicit mark operator, the effect
of a cut will be more easily understood.

Figure 22.8 shows a program that nondeterministically searches a smaller
version of the Chocoblob tree. As each box is opened, the program displays a list
of (city store box). If the box contains a coin, a c is printed after it:

> (find-boxes)
(LA 1 1)(LA 1 2)C(LA 2 1)(LA 2 2)
(NY 1 1)C(NY 1 2)(NY 2 1)(NY 2 2)
(BOS 1 1)(BOS 1 2)(BOS 2 1)(BOS 2 2)C
@

To implement the optimized search technique discovered by the Chocoblob
lawyers, we need two new operators: mark and cut. Figure 22.9 shows one way
to define them. Whereas nondeterminism itself can be understood independently
of any particular implementation, pruning the search tree is an optimization tech-
nique, and depends very much on how choose is implemented. The mark and



22.5 CUTS 301

(define (mark) (set! *paths* (cons fail *paths*)))

(define (cut)
(cond ((null? *paths*))

((equal? (car *paths*) fail)
(set! *paths* (cdr *paths*)))
(else
(set! *paths* (cdr *paths*))
(cut))))

Figure 22.9: Marking and pruning search trees.

(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(mark) ;
(newline)
(let* ((store (choose ’(1 2)))

(box (choose ’(1 2))))
(let ((triple (list city store box)))

(display triple)
(if (coin? triple)

(begin (cut) (display ’c))) ;
(fail)))))

Figure 22.10: Pruned Chocoblob search.

cut defined in Figure 22.9 are suitable for use with the depth-first implementation
of choose (Figure 22.4).

The general idea is for mark to store markers in*paths*, the list of unexplored
choice-points. Calling cut pops *paths* all the way down to the most recent
marker. What should we use as a marker? We could use e.g. the symbol m, but
that would require us to rewrite fail to ignore the ms when it encountered them.
Fortunately, since functions are data objects too, there is at least one marker that
will allow us to use fail as is: the function fail itself. Then if fail happens
on a marker, it will just call itself.

Figure 22.10 shows how these operators would be used to prune the search
tree in the Chocoblob case. (Changed lines are indicated by semicolons.) We call
mark upon choosing a city. At this point, *paths* contains one continuation,



302 NONDETERMINISM

Figure 22.11: A directed graph with a loop.

representing the search of the remaining cities.
If we find a box with a coin in it, we call cut, which sets *paths* back to the

value it had at the time of the mark. The effects of the cut are not visible until the
next call to fail. But when it comes, after the display, the next fail sends the
search all the way up to the topmost choose, even if there would otherwise have
been live choice-points lower in the search tree. The upshot is, as soon as we find
a box with a coin in it, we resume the search at the next city:

> (find-boxes)
(LA 1 1)(LA 1 2)C
(NY 1 1)C
(BOS 1 1)(BOS 1 2)(BOS 2 1)(BOS 2 2)C
@

In this case, we open seven boxes instead of twelve.

22.6 True Nondeterminism

A deterministic graph-searching program would have to take explicit steps to
avoid getting caught in a circular path. Figure 22.11 shows a directed graph
containing a loop. A program searching for a path from node a to node e risks
getting caught in the circular path 〈a, b, c〉. Unless a deterministic searcher used
randomization, breadth-first search, or checked explicitly for circular paths, the
search might never terminate. The implementation of path shown in Figure 22.12
avoids circular paths by searching breadth-first.

In principle, nondeterminism should save us the trouble of even considering
circular paths. The depth-first implementation of choose and fail given in Sec-
tion 22.3 is vulnerable to the problem of circular paths, but if we were being
picky, we would expect nondeterministic choose to be able to select an object



22.6 TRUE NONDETERMINISM 303

(define (path node1 node2)
(bf-path node2 (list (list node1))))

(define (bf-path dest queue)
(if (null? queue)

’@
(let* ((path (car queue))

(node (car path)))
(if (eq? node dest)

(cdr (reverse path))
(bf-path dest

(append (cdr queue)
(map (lambda (n)

(cons n path))
(neighbors node))))))))

Figure 22.12: Deterministic search.

(define (path node1 node2)
(cond ((null? (neighbors node1)) (fail))

((memq node2 (neighbors node1)) (list node2))
(else (let ((n (true-choose (neighbors node1))))

(cons n (path n node2))))))

Figure 22.13: Nondeterministic search.

which meets any computable specification, and this case is no exception. Using a
correct choose, we should be able to write the shorter and clearer version of path
shown in Figure 22.13.

This section shows how to implement versions choose and fail which are safe
even from circular paths. Figure 22.14 contains a Scheme implementation of true
nondeterministic choose and fail. Programs which use these versions of choose ◦
and fail should find solutions whenever the equivalent nondeterministic algorithms
would, subject to hardware limitations.

The implementation of true-choose defined in Figure 22.14 works by treat-
ing the list of stored paths as a queue. Programs using true-choose will search
their state-space breadth-first. When the program reaches a choice-point, contin-
uations to follow each choice are appended to the end of the list of stored paths.



304 NONDETERMINISM

(define *paths* ())
(define failsym ’@)

(define (true-choose choices)
(call-with-current-continuation
(lambda (cc)
(set! *paths* (append *paths*

(map (lambda (choice)
(lambda () (cc choice)))

choices)))
(fail))))

(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail

(lambda ()
(if (null? *paths*)

(cc failsym)
(let ((p1 (car *paths*)))
(set! *paths* (cdr *paths*))
(p1)))))))

Figure 22.14: Correct choose in Scheme.

(Scheme’s map returns the same values as Common Lisp’s mapcar.) After this
there is a call to fail, which is unchanged.

This version of choose would allow the implementation of path defined in
Figure 22.13 to find a path—indeed, the shortest path—from a to e in the graph
displayed in Figure 22.11.

Although for the sake of completeness this chapter has provided correct ver-
sions of choose and fail, the original implementations will usually suffice. The
value of a programming language abstraction is not diminished just because its
implementation isn’t formally correct. In some languages we act as if we had
access to all the integers, even though the largest one may be only 32767. As
long as we know how far we can push the illusion, there is little danger to it—
little enough, at least, to make the abstraction a bargain. The conciseness of
the programs presented in the next two chapters is due largely to their use of
nondeterministic choose and fail.




