
19

A Query Compiler

Some of the macros defined in the preceding chapter were large ones. To generate
its expansion, if-match needed all the code in Figures 18.7 and 18.8, plus
destruc from Figure 18.1. Macros of this size lead naturally to our last topic,
embedded languages. If small macros are extensions to Lisp, large macros define
sub-languages within it—possibly with their own syntax or control structure. We
saw the beginning of this in if-match, which had its own distinct representation
for variables.

A language implemented within Lisp is called an embedded language. Like
“utility,” the term is not a precisely defined one; if-match probably still counts
as a utility, but it is getting close to the borderline.

An embedded language is not a like a language implemented by a traditional
compiler or interpreter. It is implemented within some existing language, usually
by transformation. There need be no barrier between the base language and the
extension: it should be possible to intermingle the two freely. For the implementor,
this can mean a huge saving of effort. You can embed just what you need, and for
the rest, use the base language.

Transformation, in Lisp, suggests macros. To some extent, you could imple-
ment embedded languages with preprocessors. But preprocessors usually operate
only on text, while macros take advantage of a unique property of Lisp: between
the reader and the compiler, your Lisp program is represented as lists of Lisp
objects. Transformations done at this stage can be much smarter.

The best-known example of an embedded language is CLOS, the Common Lisp
Object System. If you wanted to make an object-orientedversion of a conventional
language, you would have to write a new compiler. Not so in Lisp. Tuning the

246



19.1 THE DATABASE 247

compiler will make CLOS run faster, but in principle the compiler doesn’t have to
be changed at all. The whole thing can be written in Lisp.

The remaining chapters give examples of embedded languages. This chapter
describes how to embed in Lisp a program to answer queries on a database. (You
will notice in this program a certain family resemblance to if-match.) The first
sections describe how to write a system which interprets queries. This program is
then reimplemented as a query compiler—in essence, as one big macro—making
it both more efficient and better integrated with Lisp.

19.1 The Database

For our present purposes, the format of the database doesn’t matter very much.
Here, for the sake of convenience, we will store information in lists. For example,
we will represent the fact that Joshua Reynolds was an English painter who lived
from 1723 to 1792 by:

(painter reynolds joshua english)
(dates reynolds 1723 1792)

There is no canonical way of reducing information to lists. We could just as well
have used one big list:

(painter reynolds joshua 1723 1792 english)

It is up to the user to decide how to organize database entries. The only restriction
is that the entries (facts) will be indexed under their first element (the predicate).
Within those bounds, any consistent form will do, although some forms might
make for faster queries than others.

Any database system needs at least two operations: one for modifying the
database, and one for examining it. The code shown in Figure 19.1 provides these
operations in a basic form. A database is represented as a hash-table filled with
lists of facts, hashed according to their predicate.

Although the database functions defined in Figure 19.1 support multiple
databases, they all default to operations on *default-db*. As with packages
in Common Lisp, programs which don’t need multiple databases need not even
mention them. In this chapter all the examples will just use the *default-db*.

We initialize the system by calling clear-db, which empties the current
database. We can look up facts with a given predicate with db-query, and insert
new facts into a database entry with db-push. As explained in Section 12.1, a
macro which expands into an invertible reference will itself be invertible. Since
db-query is defined this way, we can simply push new facts onto the db-query
of their predicates. In Common Lisp, hash-table entries are initialized to nil



248 A QUERY COMPILER

(defun make-db (&optional (size 100))
(make-hash-table :size size))

(defvar *default-db* (make-db))

(defun clear-db (&optional (db *default-db*))
(clrhash db))

(defmacro db-query (key &optional (db ’*default-db*))
‘(gethash ,key ,db))

(defun db-push (key val &optional (db *default-db*))
(push val (db-query key db)))

(defmacro fact (pred &rest args)
‘(progn (db-push ’,pred ’,args)

’,args))

Figure 19.1: Basic database functions.

unless specified otherwise, so any key initially has an empty list associated with
it. Finally, the macro fact adds a new fact to the database.

> (fact painter reynolds joshua english)
(REYNOLDS JOSHUA ENGLISH)
> (fact painter canale antonio venetian)
(CANALE ANTONIO VENETIAN)
> (db-query ’painter)
((CANALE ANTONIO VENETIAN)
(REYNOLDS JOSHUA ENGLISH))

T

The t returned as the second value by db-query appears because db-query
expands into a gethash, which returns as its second value a flag to distinguish
between finding no entry and finding an entry whose value is nil.

19.2 Pattern-Matching Queries

Calling db-query is not a very flexible way of looking at the contents of the
database. Usually the user wants to ask questions which depend on more than
just the first element of a fact. A query language is a language for expressing



19.2 PATTERN-MATCHING QUERIES 249

〈query〉 : (〈symbol〉 〈argument〉*)
: (not 〈query〉)
: (and 〈query〉*)
: (or 〈query〉*)

〈argument〉 : ?〈symbol〉
: 〈symbol〉
: 〈number〉

Figure 19.2: Syntax of queries.

more complicated questions. In a typical query language, the user can ask for all
the values which satisfy some combination of restrictions—for example, the last
names of all the painters born in 1697.

Our program will provide a declarative query language. In a declarative query
language, the user specifies the constraints which answers must satisfy, and leaves
it to the system to figure out how to generate them. This way of expressing queries
is close to the form people use in everyday conversation. With our program, we
will be able to express the sample query by asking for all the x such that there
is a fact of the form (painter x ...), and a fact of the form (dates x 1697
...). We will be able to refer to all the painters born in 1697 by writing:

(and (painter ?x ?y ?z)
(dates ?x 1697 ?w))

As well as accepting simple queries consisting of a predicate and some arguments,
our program will be able to answer arbitrarily complex queries joined together by
logical operators like and and or. The syntax of the query language is shown in
Figure 19.2.

Since facts are indexed under their predicates, variables cannot appear in the
predicate position. If you were willing to give up the benefits of indexing, you
could get around this restriction by always using the same predicate, and making
the first argument the de facto predicate.

Like many such systems, this program has a skeptic’s notion of truth: some
facts are known, and everything else is false. The not operator succeeds if the
fact in question is not present in the database. To a degree, you could represent
explicit falsity by the Wayne’s World method:

(edible motor-oil not)

However, the not operator wouldn’t treat these facts differently from any others.



250 A QUERY COMPILER

In programming languages there is a fundamental distinction between inter-
preted and compiled programs. In this chapter we examine the same question
with respect to queries. A query interpreter accepts a query and uses it to generate
answers from the database. A query compiler accepts a query and generates a
program which, when run, yields the same result. The following sections describe
a query interpreter and then a query compiler.

19.3 A Query Interpreter

To implement a declarative query language we will use the pattern-matching
utilities defined in Section 18.4. The functions shown in Figure 19.3 interpret
queries of the form shown in Figure 19.2. The central function in this code is
interpret-query, which recursively works through the structure of a complex
query, generating bindings in the process. The evaluation of complex queries
proceeds left-to-right, as in Common Lisp itself.

When the recursion gets down to patterns for facts, interpret-query calls
lookup. This is where the pattern-matching occurs. The function lookup takes
a pattern consisting of a predicate and a list of arguments, and returns a list of all
the bindings which make the pattern match some fact in the database. It gets all
the database entries for the predicate, and calls match (page 239) to compare each
of them against the pattern. Each successful match returns a list of bindings, and
lookup in turn returns a list of all these lists.

> (lookup ’painter ’(?x ?y english))
(((?Y . JOSHUA) (?X . REYNOLDS)))

These results are then filtered or combined depending on the surrounding
logical operators. The final result is returned as a list of sets of bindings. Given
the assertions shown in Figure 19.4, here is the example from earlier in this
chapter:

> (interpret-query ’(and (painter ?x ?y ?z)
(dates ?x 1697 ?w)))

(((?W . 1768) (?Z . VENETIAN) (?Y . ANTONIO) (?X . CANALE))
((?W . 1772) (?Z . ENGLISH) (?Y . WILLIAM) (?X . HOGARTH)))

As a general rule, queries can be combined and nested without restriction. In a
few cases there are subtle restrictions on the syntax of queries, but these are best
dealt with after looking at some examples of how this code is used.

The macro with-answer provides a clean way of using the query interpreter
within Lisp programs. It takes as its first argument any legal query; the rest
of the arguments are treated as a body of code. A with-answer expands into



19.3 A QUERY INTERPRETER 251

(defmacro with-answer (query &body body)
(let ((binds (gensym)))
‘(dolist (,binds (interpret-query ’,query))

(let ,(mapcar #’(lambda (v)
‘(,v (binding ’,v ,binds)))

(vars-in query #’atom))
,@body))))

(defun interpret-query (expr &optional binds)
(case (car expr)
(and (interpret-and (reverse (cdr expr)) binds))
(or (interpret-or (cdr expr) binds))
(not (interpret-not (cadr expr) binds))
(t (lookup (car expr) (cdr expr) binds))))

(defun interpret-and (clauses binds)
(if (null clauses)

(list binds)
(mapcan #’(lambda (b)

(interpret-query (car clauses) b))
(interpret-and (cdr clauses) binds))))

(defun interpret-or (clauses binds)
(mapcan #’(lambda (c)

(interpret-query c binds))
clauses))

(defun interpret-not (clause binds)
(if (interpret-query clause binds)

nil
(list binds)))

(defun lookup (pred args &optional binds)
(mapcan #’(lambda (x)

(aif2 (match x args binds) (list it)))
(db-query pred)))

Figure 19.3: Query interpreter.



252 A QUERY COMPILER

(clear-db)
(fact painter hogarth william english)
(fact painter canale antonio venetian)
(fact painter reynolds joshua english)
(fact dates hogarth 1697 1772)
(fact dates canale 1697 1768)
(fact dates reynolds 1723 1792)

Figure 19.4: Assertion of sample facts.

code which collects all the sets of bindings generated by the query, then iterates
through the body with the variables in the query bound as specified by each set of
bindings. Variables which appear in the query of a with-answer can (usually)
be used within its body. When the query is successful but contains no variables,
with-answer evaluates the body of code just once.

With the database as defined in Figure 19.4, Figure 19.5 shows some sample
queries, accompanied by English translations. Because pattern-matching is done
with match, it is possible to use the underscore as a wild-card in patterns.

To keep these examples short, the code within the bodies of the queries does
nothing more than print some result. In general, the body of a with-answer can
consist of any Lisp expressions.

19.4 Restrictions on Binding

There are some restrictions on which variables will be bound by a query. For
example, why should the query

(not (painter ?x ?y ?z))

assign any bindings to ?x and ?y at all? There are an infinite number of combi-
nations of ?x and ?y which are not the name of some painter. Thus we add the
following restriction: the not operator will filter out bindings which are already
generated, as in

(and (painter ?x ?y ?z) (not (dates ?x 1772 ?d)))

but you cannot expect it to generate bindings all by itself. We have to generate
sets of bindings by looking for painters before we can screen out the ones not born
in 1772. If we had put the clauses in the reverse order:

(and (not (dates ?x 1772 ?d)) (painter ?x ?y ?z)) ; wrong



19.4 RESTRICTIONS ON BINDING 253

The first name and nationality of every painter called Hogarth.

> (with-answer (painter hogarth ?x ?y)
(princ (list ?x ?y)))

(WILLIAM ENGLISH)
NIL

The last name of every painter born in 1697. (Our original example.)

> (with-answer (and (painter ?x _ _)
(dates ?x 1697 _))

(princ (list ?x)))
(CANALE)(HOGARTH)
NIL

The last name and year of birth of everyone who died in 1772 or 1792.

> (with-answer (or (dates ?x ?y 1772)
(dates ?x ?y 1792))

(princ (list ?x ?y)))
(HOGARTH 1697)(REYNOLDS 1723)
NIL

The last name of every English painter not born the same year as a Venetian
one.

> (with-answer (and (painter ?x _ english)
(dates ?x ?b _)
(not (and (painter ?x2 _ venetian)

(dates ?x2 ?b _))))
(princ ?x))

REYNOLDS
NIL

Figure 19.5: The query interpreter in use.

then we would get nil as the result if there were any painters born in 1772. Even
in the first example, we shouldn’t expect to be able to use the value of ?d within
the body of a with-answer expression.

Also, expressions of the form (or q1 . . . qn) are only guaranteed to generate
real bindings for variables which appear in all of the q i. If a with-answer
contained the query

(or (painter ?x ?y ?z) (dates ?x ?b ?d))



254 A QUERY COMPILER

you could expect to use the binding of ?x, because no matter which of the
subqueries succeeds, it will generate a binding for ?x. But neither ?y nor ?b is
guaranteed to get a binding from the query, though one or the other will. Pattern
variables not bound by the query will be nil for that iteration.◦

19.5 A Query Compiler

The code in Figure 19.3 does what we want, but inefficiently. It analyzes the
structure of the query at runtime, though it is known at compile-time. And it
conses up lists to hold variable bindings, when we could use the variables to hold
their own values. Both of these problems can be solved by defining with-answer
in a different way.

Figure 19.6 defines a new version of with-answer. The new version con-
tinues a trend which began with avg (page 182), and continued with if-match
(page 242): it does at compile-time much of the work that the old version did
at runtime. The code in Figure 19.6 bears a superficial resemblance to that in
Figure 19.3, but none of these functions are called at runtime. Instead of gen-
erating bindings, they generate code, which becomes part of the expansion of
with-answer. At runtime this code will generate all the bindings which satisfy
the query according to the current state of the database.

In effect, this program is one big macro. Figure 19.7 shows the macroexpan-
sion of a with-answer. Most of the work is done by pat-match (page 242),
which is itself a macro. Now the only new functions needed at runtime are the
basic database functions shown in Figure 19.1.

When with-answer is called from the toplevel, query compilation has little
advantage. The code representing the query is generated, evaluated, then thrown
away. But when a with-answer expression appears within a Lisp program, the
code representing the query becomes part of its macroexpansion. So when the
containing program is compiled, the code for all the queries will be compiled
inline in the process.

Although the primary advantage of the new approach is speed, it also makes
with-answer expressions better integrated with the code in which they appear.
This shows in two specific improvements. First, the arguments within the query
now get evaluated, so we can say:

> (setq my-favorite-year 1723)
1723
> (with-answer (dates ?x my-favorite-year ?d)

(format t "~A was born in my favorite year.~%" ?x))
REYNOLDS was born in my favorite year.
NIL



19.5 A QUERY COMPILER 255

(defmacro with-answer (query &body body)
‘(with-gensyms ,(vars-in query #’simple?)

,(compile-query query ‘(progn ,@body))))

(defun compile-query (q body)
(case (car q)
(and (compile-and (cdr q) body))
(or (compile-or (cdr q) body))
(not (compile-not (cadr q) body))
(lisp ‘(if ,(cadr q) ,body))
(t (compile-simple q body))))

(defun compile-simple (q body)
(let ((fact (gensym)))
‘(dolist (,fact (db-query ’,(car q)))

(pat-match ,(cdr q) ,fact ,body nil))))

(defun compile-and (clauses body)
(if (null clauses)

body
(compile-query (car clauses)

(compile-and (cdr clauses) body))))

(defun compile-or (clauses body)
(if (null clauses)

nil
(let ((gbod (gensym))

(vars (vars-in body #’simple?)))
‘(labels ((,gbod ,vars ,body))

,@(mapcar #’(lambda (cl)
(compile-query cl ‘(,gbod ,@vars)))

clauses)))))

(defun compile-not (q body)
(let ((tag (gensym)))
‘(if (block ,tag

,(compile-query q ‘(return-from ,tag nil))
t)

,body)))

Figure 19.6: Query compiler.



256 A QUERY COMPILER

(with-answer (painter ?x ?y ?z)
(format t "~A ~A is a painter.~%" ?y ?x))

is expanded by the query interpreter into:

(dolist (#:g1 (interpret-query ’(painter ?x ?y ?z)))
(let ((?x (binding ’?x #:g1))

(?y (binding ’?y #:g1))
(?z (binding ’?z #:g1)))

(format t "~A ~A is a painter.~%" ?y ?x)))

and by the query compiler into:

(with-gensyms (?x ?y ?z)
(dolist (#:g1 (db-query ’painter))
(pat-match (?x ?y ?z) #:g1

(progn
(format t "~A ~A is a painter.~%" ?y ?x))

nil)))

Figure 19.7: Two expansions of the same query.

This could have been done in the query interpreter, but only at the cost of calling
eval explicitly. And even then, it wouldn’t have been possible to refer to lexical
variables in the query arguments.

Since arguments within queries are now evaluated, any literal argument (e.g.
english) that doesn’t evaluate to itself should now be quoted. (See Figure 19.8.)

The second advantage of the new approach is that it is now much easier to
include normal Lisp expressions within queries. The query compiler adds a lisp
operator, which may be followed by any Lisp expression. Like the not operator,
it cannot generate bindings by itself, but it will screen out bindings for which
the expression returns nil. The lisp operator is useful for getting at built-in
predicates like >:

> (with-answer (and (dates ?x ?b ?d)
(lisp (> (- ?d ?b) 70)))

(format t "~A lived over 70 years.~%" ?x))
CANALE lived over 70 years.
HOGARTH lived over 70 years.
NIL

A well-implemented embedded language can have a seamless interface with the



19.5 A QUERY COMPILER 257

The first name and nationality of every painter called Hogarth.

> (with-answer (painter ’hogarth ?x ?y)
(princ (list ?x ?y)))

(WILLIAM ENGLISH)
NIL

The last name of every English painter not born in the same year as a Venetian
painter.

> (with-answer (and (painter ?x _ ’english)
(dates ?x ?b _)
(not (and (painter ?x2 _ ’venetian)

(dates ?x2 ?b _))))
(princ ?x))

REYNOLDS
NIL

The last name and year of death of every painter who died between 1770 and
1800 exclusive.

> (with-answer (and (painter ?x _ _)
(dates ?x _ ?d)
(lisp (< 1770 ?d 1800)))

(princ (list ?x ?d)))
(REYNOLDS 1792)(HOGARTH 1772)
NIL

Figure 19.8: The query compiler in use.

base language on both sides.
Aside from these two additions—the evaluation of arguments and the new

lisp operator—the query language supported by the query compiler is identical
to that supported by the interpreter. Figure 19.8 shows examples of the results
generated by the query compiler with the database as defined in Figure 19.4.

Section 17.2 gave two reasons why it is better to compile an expression
than feed it, as a list, to eval. The former is faster, and allows the expression
to be evaluated in the surrounding lexical context. The advantages of query
compilation are exactly analogous. Work that used to be done at runtime is now
done at compile-time. And because the queries are compiled as a piece with the
surrounding Lisp code, they can take advantage of the lexical context.




