
17

Read-Macros

The three big moments in a Lisp expression’s life are read-time, compile-time,
and runtime. Functions are in control at runtime. Macros give us a chance to
perform transformations on programs at compile-time. This chapter discusses
read-macros, which do their work at read-time.

17.1 Macro Characters

In keeping with the general philosophy of Lisp, you have a great deal of control
over the reader. Its behavior is controlled by properties and variables that can
all be changed on the fly. The reader can be programmed at several levels. The
easiest way to change its behavior is by defining new macro characters.

A macro character is a character which exacts special treatment from the Lisp
reader. A lower-case a, for example, is ordinarily handled just like a lower-case
b, but a left parenthesis is something different: it tells Lisp to begin reading a list.
Each such character has a function associated with it that tells the Lisp reader what
to do when the character is encountered. You can change the function associated
with an existing macro character, or define new macro characters of your own.

The built-in function set-macro-character provides one way to define
read-macros. It takes a character and a function, and thereafter when read
encounters the character, it returns the result of calling the function.

One of the oldest read-macros in Lisp is ’, the quote. You could do without
’ by always writing (quote a) instead of ’a, but this would be tiresome and
would make your code harder to read. The quote read-macro makes it possible to
use ’a as an abbreviation for (quote a). We could define it as in Figure 17.1.

224



17.1 MACRO CHARACTERS 225

(set-macro-character #\’
#’(lambda (stream char)

(list ’quote (read stream t nil t))))

Figure 17.1: Possible definition of ’.

When read encounters an instance of ’ in a normal context (e.g. not in "a’b" or
|a’b|), it will return the result of calling this function on the current stream and
character. (The function ignores this second parameter, which will always be the
quote character.) So when read sees ’a, it will return (quote a).

The last three arguments to read control respectively whether encountering
an end-of-file should cause an error, what value to return otherwise, and whether
the call to read occurs within a call to read. In nearly all read-macros, the second
and fourth arguments should be t, and the third argument is therefore irrelevant.

Read-macros and ordinary macros are both functions underneath. And like
the functions that generate macro expansions, the functions associated with macro
characters shouldn’t have side-effects, except on the stream from which they read.
Common Lisp explicitly makes no guarantees about when, or how often, the
function associated with a read-macro will be called. (See CLTL2, p. 543.)

Macros and read-macros see your program at different stages. Macros get
hold of the program when it has already been parsed into Lisp objects by the
reader, and read-macros operate on a program while it is still text. However, by
invoking read on this text, a read-macro can, if it chooses, get parsed Lisp objects
as well. Thus read-macros are at least as powerful as ordinary macros.

Indeed, read-macros are more powerful in at least two ways. A read-macro
affects everything read by Lisp, while a macro will only be expanded in code.
And since read-macros generally call read recursively, an expression like

’’a

becomes

(quote (quote a))

whereas if we had tried to define an abbreviation for quote using a normal macro,

(defmacro q (obj)
‘(quote ,obj))



226 READ-MACROS

(set-dispatch-macro-character #\# #\?
#’(lambda (stream char1 char2)

‘#’(lambda (&rest ,(gensym))
,(read stream t nil t))))

Figure 17.2: A read-macro for constant functions.

it would work in isolation,

> (eq ’a (q a))
T

but not when nested. For example,

(q (q a))

would expand into

(quote (q a))

17.2 Dispatching Macro Characters

The sharp-quote, like other read-macros beginning with #, is an example of a
subspecies called dispatching read-macros. These appear as two characters, the
first of which is called the dispatching character. The purpose of such read-macros
is simply to make the most of the ASCII character set; one can only have so many
one-character read-macros.

You can (with make-dispatch-macro-character) define your own dis-
patching macro characters, but since # is already defined as one, you may as well
use it. Some combinations beginning with # are explicitly reserved for your use;
others are available in that they do not yet have a predefined meaning in Common
Lisp. The complete list appears in CLTL2, p. 531.

New dispatching macro character combinations can be defined by calling
the function set-dispatch-macro-character, like set-macro-character
except that it takes two character arguments. One of the combinations reserved
to the programmer is #?. Figure 17.2 shows how to define this combination as
a read-macro for constant functions. Now #?2 will be read as a function which
takes any number of arguments and returns 2. For example:

> (mapcar #?2 ’(a b c))
(2 2 2)



17.3 DELIMITERS 227

(set-macro-character #\] (get-macro-character #\)))

(set-dispatch-macro-character #\# #\[
#’(lambda (stream char1 char2)

(let ((accum nil)
(pair (read-delimited-list #\] stream t)))

(do ((i (ceiling (car pair)) (1+ i)))
((> i (floor (cadr pair)))
(list ’quote (nreverse accum)))

(push i accum)))))

Figure 17.3: A read-macro defining delimiters.

This example makes the new operator look rather pointless, but in programs that
use a lot of functional arguments, constant functions are often needed. In fact,
some dialects provide a built-in function called always for defining them.

Note that it is perfectly ok to use macro characters in the definition of this
macro character: as with any Lisp expression, they disappear when the definition
is read. It is also fine to use macro-characters after the #?. The definition of #?
calls read, so macro-characters like ’ and #’ behave as usual:

> (eq (funcall #?’a) ’a)
T
> (eq (funcall #?#’oddp) (symbol-function ’oddp))
T

17.3 Delimiters

After simple macro characters, the most commonly defined macro characters
are list delimiters. Another character combination reserved for the user is #[.
Figure 17.3 gives an example of how this character might be defined as a more
elaborate kind of left parenthesis. It defines an expression of the form #[x y] to
read as a list of all the integers between x and y, inclusive:

> #[2 7]
(2 3 4 5 6 7)

The only new thing about this read-macro is the call to read-delimited-list,
a built-in function provided just for such cases. Its first argument is the character
to treat as the end of the list. For ] to be recognized as a delimiter, it must first be
given this role, hence the preliminary call to set-macro-character.



228 READ-MACROS

(defmacro defdelim (left right parms &body body)
‘(ddfn ,left ,right #’(lambda ,parms ,@body)))

(let ((rpar (get-macro-character #\) )))
(defun ddfn (left right fn)
(set-macro-character right rpar)
(set-dispatch-macro-character #\# left
#’(lambda (stream char1 char2)

(apply fn
(read-delimited-list right stream t))))))

Figure 17.4: A macro for defining delimiter read-macros.

Most potential delimiter read-macro definitions will duplicate a lot of the
code in Figure 17.3. A macro could put a more abstract interface on all this
machinery. Figure 17.4 shows how we might define a utility for defining delimiter
read-macros. The defdelim macro takes two characters, a parameter list, and a
body of code. The parameter list and the body of code implicitly define a function.
A call to defdelim defines the first character as a dispatching read-macro which
reads up to the second, then returns the result of applying this function to what it
read.

Incidentally, the body of the function in Figure 17.3 also cries out for a utility—
for one we have already defined, in fact: mapa-b, from page 54. Using defdelim
and mapa-b, the read-macro defined in Figure 17.3 could now be written:

(defdelim #\[ #\] (x y)
(list ’quote (mapa-b #’identity (ceiling x) (floor y))))

Another useful delimiter read-macro would be one for functional composition.
Section 5.4 defined an operator for functional composition:

> (let ((f1 (compose #’list #’1+))
(f2 #’(lambda (x) (list (1+ x)))))

(equal (funcall f1 7) (funcall f2 7)))
T

When we are composing built-in functions like list and 1+, there is no reason
to wait until runtime to evaluate the call to compose. Section 5.7 suggested an
alternative; by prefixing the sharp-dot read-macro to a compose expression,

#.(compose #’list #’1+)



17.4 WHEN WHAT HAPPENS 229

(defdelim #\{ #\} (&rest args)
‘(fn (compose ,@args)))

Figure 17.5: A read-macro for functional composition.

we could cause it to be evaluated at read-time.
Here we show a similar but cleaner solution. The read-macro in Figure 17.5

defines an expression of the form #{f 1 f 2 . . . f n} to read as the composition of
f 1, f 2, . . . , f n. Thus:

> (funcall #{list 1+} 7)
(8)

It works by generating a call to fn (page 202), which will create the function at
compile-time.

17.4 When What Happens

Finally, it might be useful to clear up a possibly confusing issue. If read-macros are
invoked before ordinary macros, how is it that macros can expand into expressions
which contain read-macros? For example, the macro:

(defmacro quotable ()
’(list ’able))

generates an expansion with a quote in it. Or does it? In fact, what happens is
that both quotes in the definition of this macro are expanded when the defmacro
expression is read, yielding

(defmacro quotable ()
(quote (list (quote able))))

Usually, there is no harm in acting as if macroexpansions could contain read-
macros, because the definition of a read-macro will not (or should not) change
between read-time and compile-time.




