
16

Macro-Defining Macros

Patterns in code often signal the need for new abstractions. This rule holds just as
much for the code in macros themselves. When several macros have definitions
of a similar form, we may be able to write a macro-defining macro to produce
them. This chapter presents three examples of macro-defining macros: one to
define abbreviations, one to define access macros, and a third to define anaphoric
macros of the type described in Section 14.1.

16.1 Abbreviations

The simplest use of macros is as abbreviations. Some Common Lisp operators
have rather long names. Ranking high among them (though by no means the
longest) is destructuring-bind, which has 18 characters. A corollary of ◦
Steele’s principle (page 43) is that commonly used operators ought to have short
names. (“We think of addition as cheap partly because we can notate it with a
single character: ‘+’.”) The built-in destructuring-bind macro introduces a
new layer of abstraction, but the actual gain in brevity is masked by its long name:

(let ((a (car x)) (b (cdr x))) ...)

(destructuring-bind (a . b) x ...)

A program, like printed text, is easiest to read when it contains no more than about
70 characters per line. We begin at a disadvantage when the lengths of individual
names are a quarter of that.

213



214 MACRO-DEFINING MACROS

(defmacro abbrev (short long)
‘(defmacro ,short (&rest args)

‘(,’,long ,@args)))

(defmacro abbrevs (&rest names)
‘(progn

,@(mapcar #’(lambda (pair)
‘(abbrev ,@pair))

(group names 2))))

Figure 16.1: Automatic definition of abbreviations.

Fortunately, in a language like Lisp you don’t have to live with all the decisions
of the designers. Having defined

(defmacro dbind (&rest args)
‘(destructuring-bind ,@args))

you need never use the long name again. Likewise for multiple-value-bind,
which is longer and more frequently used.

(defmacro mvbind (&rest args)
‘(multiple-value-bind ,@args))

Notice how nearly identical are the definitions of dbind and mvbind. Indeed,
this formula of &rest and comma-at will suffice to define an abbreviation for any
function,1 macro, or special form. Why crank out more definitions on the model
of mvbind when we could have a macro do it for us?

To define a macro-defining macro we will often need nested backquotes.
Nested backquotes are notoriously hard to understand. Eventually common cases
will become familiar, but one should not expect to be able to look at an arbitrary
backquoted expression and say what it will yield. It is not a fault in Lisp that
this is so, any more than it is a fault of the notation that one can’t just look at
a complicated integral and know what its value will be. The difficulty is in the
problem, not the notation.

However, as we do when finding integrals, we can break up the analysis of
backquotes into small steps, each of which can easily be followed. Suppose we
want to write a macro abbrev, which will allow us to define mvbind just by
saying

1Though the abbreviation can’t be passed to apply or funcall.



16.2 ABBREVIATIONS 215

(abbrev mvbind multiple-value-bind)

Figure 16.1 contains a definition of this macro. Where did it come from? The
definition of such a macro can be derived from a sample expansion. One expansion
is:

(defmacro mvbind (&rest args)
‘(multiple-value-bind ,@args))

The derivation will be easier if we pull multiple-value-bind from within the
backquote, because we know it will be an argument to the eventual macro. This
yields the equivalent definition

(defmacro mvbind (&rest args)
(let ((name ’multiple-value-bind))
‘(,name ,@args)))

Now we take this expression and turn it into a template. We affix a backquote,
and replace the expressions which will vary, with variables.

‘(defmacro ,short (&rest args)
(let ((name ’,long))
‘(,name ,@args)))

The final step is to simplify this expression by substituting’,long fornamewithin
the inner backquote:

‘(defmacro ,short (&rest args)
‘(,’,long ,@args))

which yields the body of the macro defined in Figure 16.1.
Figure 16.1 also contains abbrevs, for cases where we want to define several

abbreviations in one shot.

(abbrevs dbind destructuring-bind
mvbind multiple-value-bind
mvsetq multiple-value-setq)

The user of abbrevs doesn’t have to insert additional parentheses because
abbrevs calls group (page 47) to group its arguments by twos. It’s gener-
ally a good thing for macros to save users from typing logically unnecessary
parentheses, and group will be useful to most such macros.



216 MACRO-DEFINING MACROS

(defmacro propmacro (propname)
‘(defmacro ,propname (obj)

‘(get ,obj ’,’,propname)))

(defmacro propmacros (&rest props)
‘(progn

,@(mapcar #’(lambda (p) ‘(propmacro ,p))
props)))

Figure 16.2: Automatic definition of access macros.

16.2 Properties

Lisp offers many ways to associate properties with objects. If the object in question
can be represented as a symbol, one of the most convenient (though least efficient)
ways is to use the symbol’s property list. To describe the fact that an object o has
a property p, the value of which is v, we modify the property list of o:

(setf (get o p) v)

So to say that ball1 has color red, we say:

(setf (get ’ball1 ’color) ’red)

If we’re going to refer often to some property of objects, we can define a macro
to retrieve it:

(defmacro color (obj)
‘(get ,obj ’color))

and thereafter use color in place of get:

> (color ’ball1)
RED

Since macro calls are transparent to setf (see Chapter 12) we can also say:

> (setf (color ’ball1) ’green)
GREEN

Such macros have the advantage of hiding the particular way in which the
program represents the color of an object. Property lists are slow; a later version



16.2 PROPERTIES 217

of the program might, for the sake of speed, represent color as a field in a
structure, or an entry in a hash-table. When data is reached through a facade of
macros like color, it becomes easy, even in a comparatively mature program,
to make pervasive changes to the lowest-level code. If a program switches from
using property lists to structures, nothing above the facade of access macros will
have to be changed; none of the code which looks upon the facade need even be
aware of the rebuilding going on behind it.

For the weight property, we can define a macro similar to the one written for
color:

(defmacro weight (obj)
‘(get ,obj ’weight))

Like the abbreviations in the previous section, the definitions of of color and
weight are nearly identical. Here propmacro (Figure 16.2) can play the same
role as abbrev did.

A macro-defining macro can be designed by the same process as any other
macro: look at the macro call, then its intended expansion, then figure out how to
transform the former into the latter. We want

(propmacro color)

to expand into

(defmacro color (obj)
‘(get ,obj ’color))

Though this expression is itself a defmacro, we can still make a template of it,
by backquoting it and putting comma’d parameter names in place of instances
of color. As in the previous section, we begin by transforming it so that no
instances of color are within existing backquotes:

(defmacro color (obj)
(let ((p ’color))
‘(get ,obj ’,p)))

Then we go ahead and make the template,

‘(defmacro ,propname (obj)
(let ((p ’,propname))
‘(get ,obj ’,p)))

which simplifies to ◦



218 MACRO-DEFINING MACROS

‘(defmacro ,propname (obj)
‘(get ,obj ’,’,propname))

For cases where a group of property-names all have to be defined as macros,
there is propmacros (Figure 16.2), which expands into a series of individual
calls to propmacro. Like abbrevs, this modest piece of code is actually a
macro-defining-macro-defining macro.

Though this section dealt with property lists, the technique described here is a
general one. We could use it to define access macros on data stored in any form.

16.3 Anaphoric Macros

Section 14.1 gave definitions of several anaphoric macros. When you use a macro
like aif or aand, during the evaluation of some arguments the symbol it will be
bound to the values returned by other ones. So instead of

(let ((res (complicated-query)))
(if res

(foo res)))

you can use just

(aif (complicated-query)
(foo it))

and instead of

(let ((o (owner x)))
(and o (let ((a (address o)))

(and a (city a)))))

simply

(aand (owner x) (address it) (city it))

Section 14.1 presented seven anaphoric macros: aif, awhen, awhile, acond,
alambda, ablock, and aand. These seven are by no means the only useful
anaphoric macros of their type. In fact, we can define an anaphoric variant of just
about any Common Lisp function or macro. Many of these macros will be like
mapcon: rarely used, but indispensable when they are needed.

For example, we can define a+ so that, as with aand, it is always bound to
the value returned by the previous argument. The following function calculates
the cost of dining out in Massachusetts:



16.3 ANAPHORIC MACROS 219

(defmacro a+ (&rest args)
(a+expand args nil))

(defun a+expand (args syms)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(a+expand (cdr args)

(append syms (list sym)))))
‘(+ ,@syms)))

(defmacro alist (&rest args)
(alist-expand args nil))

(defun alist-expand (args syms)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(alist-expand (cdr args)

(append syms (list sym)))))
‘(list ,@syms)))

Figure 16.3: Definitions of a+ and alist.

(defun mass-cost (menu-price)
(a+ menu-price (* it .05) (* it 3)))

The Massachusetts Meals Tax is 5%, and residents often calculate the tip by
tripling the tax. By this formula, the total cost of the broiled scrod at Dolphin
Seafood is therefore:

> (mass-cost 7.95)
9.54

but this includes salad and a baked potato.
The macroa+, defined in Figure 16.3,relies on a recursive function,a+expand,

to generate its expansion. The general strategy of a+expand is to cdr down the
list of arguments in the macro call, generating a series of nested let expressions;
each let leaves it bound to a different argument, but also binds a distinct gensym



220 MACRO-DEFINING MACROS

(defmacro defanaph (name &optional calls)
(let ((calls (or calls (pop-symbol name))))
‘(defmacro ,name (&rest args)

(anaphex args (list ’,calls)))))

(defun anaphex (args expr)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(anaphex (cdr args)

(append expr (list sym)))))
expr))

(defun pop-symbol (sym)
(intern (subseq (symbol-name sym) 1)))

Figure 16.4: Automatic definition of anaphoric macros.

to each argument. The expansion function accumulates a list of these gensyms,
and when it reaches the end of the list of arguments it returns a + expression with
the gensyms as the arguments. So the expression

(a+ menu-price (* it .05) (* it 3))

yields the macroexpansion:

(let* ((#:g2 menu-price) (it #:g2))
(let* ((#:g3 (* it 0.05)) (it #:g3))
(let* ((#:g4 (* it 3)) (it #:g4))

(+ #:g2 #:g3 #:g4))))

Figure 16.3 also contains the definition of the analogous alist:

> (alist 1 (+ 2 it) (+ 2 it))
(1 3 5)

Once again, the definitions of a+ and alist are almost identical. If we want
to define more macros like them, these too will be mostly duplicate code. Why
not have a program produce it for us? The macro defanaph in Figure 16.4 will
do so. With defanaph, defining a+ and alist is as simple as



16.3 ANAPHORIC MACROS 221

(defanaph a+)
(defanaph alist)

The expansions of a+ and alist so defined will be identical to the expansions
made by the code in Figure 16.3. The macro-defining macrodefanaphwill create
an anaphoric variant of anything whose arguments are evaluated according to the
normal evaluation rule for functions. That is, defanaph will work for anything
whose arguments are all evaluated, and evaluated left-to-right. So you couldn’t
use this version of defanaph to define aif or awhile, but you can use it to define
an anaphoric variant of any function.

As a+ called a+expand to generate its expansion, defanaph defines a macro
which will call anaphex to do so. The generic expander anaphex differs from
a+expand only in taking as an argument the function name to appear finally in
the expansion. In fact, a+ could now be defined:

(defmacro a+ (&rest args)
(anaphex args ’(+)))

Neither anaphex nor a+expand need have been defined as distinct functions:
anaphex could have been defined with labels or alambda within defanaph.
The expansion generators are here broken out as separate functions only for the
sake of clarity.

By default, defanaph determines what to call in the expansion by pulling the
first letter (presumably an a) from the front of its argument. (This operation is
performed by pop-symbol.) If the user prefers to specify an alternate name, it
can be given as an optional argument. Although defanaph can build anaphoric
variants of all functions and some macros, it imposes some irksome restrictions:

1. It only works for operators whose arguments are all evaluated.

2. In the macroexpansion, it is always bound to successive arguments. In
some cases—awhen, for example—we want it to stay bound to the value
of the first argument.

3. It won’t work for a macro like setf, which expects a generalized variable
as its first argument.

Let’s consider how to remove some of these restrictions. Part of the first problem
can be solved by solving the second. To generate expansions for a macro like aif,
we need a modified version of anaphex which only replaces the first argument in
the macro call:

(defun anaphex2 (op args)
‘(let ((it ,(car args)))

(,op it ,@(cdr args))))



222 MACRO-DEFINING MACROS

This nonrecursive version of anaphex doesn’t need to ensure that the macroex-
pansion will bind it to successive arguments, so it can generate an expansion
which won’t necessarily evaluate all the arguments in the macro call. Only the
first argument must be evaluated, in order to bind it to its value. So aif could
be defined as:

(defmacro aif (&rest args)
(anaphex2 ’if args))

This definition would differ from the original on page 191 only in the point where
it would complain if aif were given the wrong number of arguments; for correct
macro calls, the two generate identical expansions.

The third problem, that defanaphwon’t work with generalized variables, can
be solved by using f (page 173) in the expansion. Operators like setf can be
handled by a variant of anaphex2 defined as follows:

(defun anaphex3 (op args)
‘(_f (lambda (it) (,op it ,@(cdr args))) ,(car args)))

This expander assumes that the macro call will have one or more arguments, the
first of which will be a generalized variable. Using it we could define asetf thus:

(defmacro asetf (&rest args)
(anaphex3 ’setf args))

Figure 16.5 shows all three expander functions yoked together under the
control of a single macro, the new defanaph. The user signals the type of macro
expansion desired with the optional rule keyword parameter, which specifies the
evaluation rule to be used for the arguments in the macro call. If this parameter
is:

:all (the default) the macroexpansion will be on the model of alist. All the
arguments in the macro call will be evaluated, with it always bound to the
value of the previous argument.

:first the macroexpansion will be on the model of aif. Only the first argument
will necessarily be evaluated, and it will be bound to its value.

:place the macroexpansion will be on the model of asetf. The first argument
will be treated as a generalized variable, and it will be bound to its initial
value.

Using the new defanaph, some of the previous examples would be defined as
follows:



16.3 ANAPHORIC MACROS 223

(defmacro defanaph (name &optional &key calls (rule :all))
(let* ((opname (or calls (pop-symbol name)))

(body (case rule
(:all ‘(anaphex1 args ’(,opname)))
(:first ‘(anaphex2 ’,opname args))
(:place ‘(anaphex3 ’,opname args)))))

‘(defmacro ,name (&rest args)
,body)))

(defun anaphex1 (args call)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(anaphex1 (cdr args)

(append call (list sym)))))
call))

(defun anaphex2 (op args)
‘(let ((it ,(car args))) (,op it ,@(cdr args))))

(defun anaphex3 (op args)
‘(_f (lambda (it) (,op it ,@(cdr args))) ,(car args)))

Figure 16.5: More general defanaph.

(defanaph alist)
(defanaph aif :rule :first)
(defanaph asetf :rule :place)

One of the advantages ofasetf is that it makes it possible to define a large class
of macros on generalized variables without worrying about multiple evaluation.
For example, we could define incf as:

(defmacro incf (place &optional (val 1))
‘(asetf ,place (+ it ,val)))

and, say, pull (page 173) as:

(defmacro pull (obj place &rest args)
‘(asetf ,place (delete ,obj it ,@args)))




