
12

Generalized Variables

Chapter 8 mentioned that one of the advantages of macros is their ability to
transform their arguments. One macro of this sort is setf. This chapter looks at
the implications of setf, and then shows some examples of macros which can be
built upon it.

Writing correct macros on setf is surprisingly difficult. To introduce the
topic, the first section will provide a simple example which is slightly incorrect.
The next section will explain what’s wrong with this macro, and show how to fix
it. The third and fourth sections present examples of utilities built on setf, and
the final section explains how to define your own setf inversions.

12.1 The Concept

The built-in macro setf is a generalization of setq. The first argument to setf
can be a call instead of just a variable:

> (setq lst ’(a b c))
(A B C)
> (setf (car lst) 480)
480
> lst
(480 B C)

In general (setf x y) can be understood as saying “see to it that x evaluates to
y.” As a macro, setf can look inside its arguments to see what needs to be done
to make such a statement true. If the first argument (after macroexpansion) is a

165



166 GENERALIZED VARIABLES

symbol, the setf just expands into a setq. But if the first argument is a query,
the setf expands into the corresponding assertion. Since the second argument is
a constant, the preceding example could expand into:

(progn (rplaca lst 480) 480)

This transformation from query to assertion is called inversion. All the most
frequently used Common Lisp access functions have predefined inversions, in-
cluding car, cdr, nth, aref, get, gethash, and the access functions created by
defstruct. (The full list is in CLTL2, p. 125.)

An expression which can serve as the first argument to setf is called a
generalized variable. Generalized variables have turned out to be a powerful
abstraction. A macro call resembles a generalized variable in that any macro call
which expands into an invertible reference will itself be invertible.

When we also write our own macros on top of setf, the combination leads to
noticeably cleaner programs. One of the macros we can define on top of setf is
toggle,1

(defmacro toggle (obj) ; wrong
‘(setf ,obj (not ,obj)))

which toggles the value of a generalized variable:

> (let ((lst ’(a b c)))
(toggle (car lst))
lst)

(NIL B C)

Now consider the following sample application. Suppose someone—a soap-
opera writer, energetic busybody, or party official—wants to maintain a database
of all the relations between the inhabitants of a small town. Among the tables
required is one which records people’s friends:

(defvar *friends* (make-hash-table))

The entries in this hash-table are themselves hash-tables, in which names of
potential friends are mapped to t or nil:

(setf (gethash ’mary *friends*) (make-hash-table))

To make John the friend of Mary, we would say:

(setf (gethash ’john (gethash ’mary *friends*)) t)

1This definition is not correct, as the following section will explain.



12.2 THE MULTIPLE EVALUATION PROBLEM 167

The town is divided between two factions. As factions are wont to do, each
says “anyone who is not with us is against us,” so everyone in town has been
compelled to join one side or the other. Thus when someone switches sides, all
his friends become enemies and all his enemies become friends.

To toggle whether x is the friend of y using only built-in operators, we have
to say:

(setf (gethash x (gethash y *friends*))
(not (gethash x (gethash y *friends*))))

which is a rather complicated expression, though much simpler than it would
have been without setf. If we had defined an access macro upon the database as
follows:

(defmacro friend-of (p q)
‘(gethash ,p (gethash ,q *friends*)))

then between this macro and toggle, we would have been better equipped to deal
with changes to the database. The previous update could have been expressed as
simply:

(toggle (friend-of x y))

Generalized variables are like a health food that tastes good. They yield
programs which are virtuously modular, and yet beautifully elegant. If you
provide access to your data structures through macros or invertible functions,
other modules can use setf to modify your data structures without having to
know the details of their representation.

12.2 The Multiple Evaluation Problem

The previous section warned that our initial definition of toggle was incorrect:

(defmacro toggle (obj) ; wrong
‘(setf ,obj (not ,obj)))

It is subject to the problem described in Section 10.1, multiple evaluation. Trouble
arises when its argument has side-effects. For example, if lst is a list of objects,
and we write:

(toggle (nth (incf i) lst))

then we would expect to be toggling the (i+1)th element. However, with the
current definition of toggle this call will expand into:



168 GENERALIZED VARIABLES

(setf (nth (incf i) lst)
(not (nth (incf i) lst)))

This increments i twice, and sets the (i+1)th element to the opposite of the
(i+2)th element. So in this example

> (let ((lst ’(t nil t))
(i -1))

(toggle (nth (incf i) lst))
lst)

(T NIL T)

the call to toggle seems to have no effect.
It is not enough just to take the expression given as an argument to toggle

and insert it as the first argument to setf. We have to look inside the expression to
see what it does: if it contains subforms, we have to break them apart and evaluate
them separately, in case they have side effects. In general, this is a complicated
business.

To make it easier, Common Lisp provides a macro which automatically defines
a limited class of macros on setf. This macro is called define-modify-macro,
and it takes three arguments: the name of the macro, its additional parameters
(after the generalized variable), and the name of the function 2 which yields the
new value for the generalized variable.

Using define-modify-macro, we could define toggle as follows:

(define-modify-macro toggle () not)

Paraphrased, this says “to evaluate an expression of the form (toggle place),
find the location specified by place, and if the value stored there is val, replace it
with the value of (not val).” Here is the new macro used in the same example:

> (let ((lst ’(t nil t))
(i -1))

(toggle (nth (incf i) lst))
lst)

(NIL NIL T)

This version gives the correct result, but it could be made more general. Since
setf and setq can take an arbitrary number of arguments, so should toggle.
We can add this capability by defining another macro on top of the modify-macro,
as in Figure 12.1.

2A function name in the general sense: either 1+ or (lambda (x) (+ x 1)).



12.3 NEW UTILITIES 169

(defmacro allf (val &rest args)
(with-gensyms (gval)
‘(let ((,gval ,val))

(setf ,@(mapcan #’(lambda (a) (list a gval))
args)))))

(defmacro nilf (&rest args) ‘(allf nil ,@args))

(defmacro tf (&rest args) ‘(allf t ,@args))

(defmacro toggle (&rest args)
‘(progn

,@(mapcar #’(lambda (a) ‘(toggle2 ,a))
args)))

(define-modify-macro toggle2 () not)

Figure 12.1: Macros which operate on generalized variables.

12.3 New Utilities

This section gives some examples of new utilities which operate on generalized
variables. They must be macros in order to pass their arguments intact to setf.

Figure 12.1 shows four new macros built upon setf. The first, allf, is for
setting a number of generalized variables to the same value. Upon it are built
nilf and tf, which set their arguments to nil and t, respectively. These macros
are simple, but they make a difference.

Like setq, setf can take multiple arguments—alternating variables and val-
ues:

(setf x 1 y 2)

So can these new utilities, but you can skip giving half the arguments. If you want
to initialize a number of variables to nil, instead of

(setf x nil y nil z nil)

you can say just

(nilf x y z)



170 GENERALIZED VARIABLES

(define-modify-macro concf (obj) nconc)

(define-modify-macro conc1f (obj)
(lambda (place obj)
(nconc place (list obj))))

(define-modify-macro concnew (obj &rest args)
(lambda (place obj &rest args)
(unless (apply #’member obj place args)
(nconc place (list obj)))))

Figure 12.2: List operations on generalized variables.

The last macro, toggle, was described in the previous section: it is like nilf,
but gives each of its arguments the opposite truth value.

These four macros illustrate an important point about operators for assignment.
Even if we only intend to use an operator on ordinary variables, it’s worth writing
it to expand into a setf instead of a setq. If the first argument is a symbol, the
setf will expand into a setq anyway. Since we can have the generality of setf
at no extra cost, it is rarely desirable to use setq in a macroexpansion.

Figure 12.2 contains three macros for destructively modifying the ends of lists.
Section 3.1 mentioned that it is unsafe to rely on

(nconc x y)

for side-effects, and that one must write instead

(setq x (nconc x y))

This idiom is embodied in concf. The more specialized conc1f and concnew
are like push and pushnew for the other end of the list: conc1f adds one element
to the end of a list, and concnew does the same, but only if the element is not
already a member.

Section 2.2 mentioned that the name of a function can be a lambda-expression
as well as a symbol. Thus it is fine to give a whole lambda-expression as the
third argument to define-modify-macro, as in the definition of conc1f. Using
conc1 from page 45, this macro could also have been written:

(define-modify-macro conc1f (obj) conc1)

The macros in Figure 12.2 should be used with one reservation. If you’re
planning to build a list by adding elements to the end, it may be preferable to use



12.4 MORE COMPLEX UTILITIES 171

push, and then nreverse the list. It is cheaper to do something to the front of a
list than to the end, because to do something to the end you have to get there first.
It is probably to encourage efficient programming that Common Lisp has many
operators for the former and few for the latter.

12.4 More Complex Utilities

Not all macros on setf can be defined with define-modify-macro. Suppose,
for example, that we want to define a macro f for applying a function destructively
to a generalized variable. The built-in macro incf is an abbreviation for setf of
+. Instead of

(setf x (+ x y))

we say just

(incf x y)

The new f is to be a generalization of this idea: while incf expands into a call
to +, f will expand into a call to the operator given as the first argument. For
example, in the definition of scale-objs on page 115, we had to write

(setf (obj-dx o) (* (obj-dx o) factor))

With f this will become

(_f * (obj-dx o) factor)

The incorrect way to write f would be:

(defmacro _f (op place &rest args) ; wrong
‘(setf ,place (,op ,place ,@args)))

Unfortunately, we can’t define a correct fwith define-modify-macro, because
the operator to be applied to the generalized variable is given as an argument.

More complex macros like this one have to be written by hand. To make such
macros easier to write, Common Lisp provides the function get-setf-method,
which takes a generalized variable and returns all the information necessary to
retrieve or set its value. We will see how to use this information by hand-generating
an expansion for:

(incf (aref a (incf i)))

When we call get-setf-method on the generalized variable, we get five
values intended for use as ingredients in the macroexpansion:



172 GENERALIZED VARIABLES

> (get-setf-method ’(aref a (incf i)))
(#:G4 #:G5)
(A (INCF I))
(#:G6)
(SYSTEM:SET-AREF #:G6 #:G4 #:G5)
(AREF #:G4 #:G5)

The first two values are lists of temporary variables and the values that should be
assigned to them. So we can begin the expansion with:

(let* ((#:g4 a)
(#:g5 (incf i)))

...)

These bindings should be created in a let* because in the general case the value
forms can refer to earlier variables. The third3 and fifth values are another tem-
porary variable and the form that will return the original value of the generalized
variable. Since we want to add 1 to this value, we wrap the latter in a call to 1+:

(let* ((#:g4 a)
(#:g5 (incf i))
(#:g6 (1+ (aref #:g4 #:g5))))

...)

Finally, the fourth value returned by get-setf-method is the assignment that
must be made within the scope of the new bindings:

(let* ((#:g4 a)
(#:g5 (incf i))
(#:g6 (1+ (aref #:g4 #:g5))))

(system:set-aref #:g6 #:g4 #:g5))

More often than not, this form will refer to internal functions which are not part
of Common Lisp. Usually setf masks the presence of these functions, but they
have to exist somewhere. Everything about them is implementation-dependent,
so portable code should use forms returned by get-setf-method, rather than
referring directly to functions like system:set-aref.

Now to implement fwe write a macro which does almost exactly what we did
when expanding incf by hand. The only difference is that, instead of wrapping
the last form in the let* in a call to 1+, we wrap it in an expression made from
the arguments to f. The definition of f is shown in Figure 12.3.

3The third value is currently always a list of one element. It is returned as a list to provide the (so
far unconsummated) potential to store multiple values in generalized variables.



12.4 MORE COMPLEX UTILITIES 173

(defmacro _f (op place &rest args)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
‘(let* (,@(mapcar #’list vars forms)

(,(car var) (,op ,access ,@args)))
,set)))

(defmacro pull (obj place &rest args)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
(let ((g (gensym)))
‘(let* ((,g ,obj)

,@(mapcar #’list vars forms)
(,(car var) (delete ,g ,access ,@args)))

,set))))

(defmacro pull-if (test place &rest args)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
(let ((g (gensym)))
‘(let* ((,g ,test)

,@(mapcar #’list vars forms)
(,(car var) (delete-if ,g ,access ,@args)))

,set))))

(defmacro popn (n place)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
(with-gensyms (gn glst)
‘(let* ((,gn ,n)

,@(mapcar #’list vars forms)
(,glst ,access)
(,(car var) (nthcdr ,gn ,glst)))

(prog1 (subseq ,glst 0 ,gn)
,set)))))

Figure 12.3: More complex macros on setf.



174 GENERALIZED VARIABLES

This utility is quite a useful one. Now that we have it, for example, we can
easily replace any named function with a memoized (Section 5.3) equivalent. 4 To
memoize foo we would say:

(_f memoize (symbol-function ’foo))

Having f also makes it easy to define other macros on setf. For example,
we could now define conc1f (Figure 12.2) as:

(defmacro conc1f (lst obj)
‘(_f nconc ,lst (list ,obj)))

Figure 12.3 contains some other useful macros on setf. The next, pull,
is intended as a complement to the built-in pushnew. The pair are like more
discerning versions of push and pop; pushnew pushes a new element onto a list
if it is not already a member, and pull destructively removes selected elements
from a list. The &rest parameter in pull’s definition makes pull able to accept
all the same keyword parameters as delete:

> (setq x ’(1 2 (a b) 3))
(1 2 (A B) 3)
> (pull 2 x)
(1 (A B) 3)
> (pull ’(a b) x :test #’equal)
(1 3)
> x
(1 3)

You could almost think of this macro as if it were defined:

(defmacro pull (obj seq &rest args) ; wrong
‘(setf ,seq (delete ,obj ,seq ,@args)))

though if it really were defined that way, it would be subject to problems with both
order and number of evaluations. We could define a version of pull as a simple
modify-macro:

(define-modify-macro pull (obj &rest args)
(lambda (seq obj &rest args)
(apply #’delete obj seq args)))

4Built-in functions should not be memoized in this way, though. Common Lisp forbids the
redefinition of built-in functions.



12.4 MORE COMPLEX UTILITIES 175

but since modify-macros must take the generalized variable as their first argument,
we would have to give the first two arguments in reverse order, which would be
less intuitive.

The more general pull-if takes an initial function argument, and expands
into a delete-if instead of a delete:

> (let ((lst ’(1 2 3 4 5 6)))
(pull-if #’oddp lst)
lst)

(2 4 6)

These two macros illustrate another general point. If the underlying function takes
optional arguments, so should the macro built upon it. Both pull and pull-if
pass optional arguments on to their deletes.

The final macro in Figure 12.3, popn, is a generalization of pop. Instead of
popping just one element of a list, it pops and returns a subsequence of arbitrary
length:

> (setq x ’(a b c d e f))
(A B C D E F)
> (popn 3 x)
(A B C)
> x
(D E F)

Figure 12.4 contains a macro which sorts its arguments. Ifx andy are variables
and we want to ensure that x does not have the lower of the two values, we can
write:

(if (> y x) (rotatef x y))

But if we want to do this for three or more variables, the code required grows
rapidly. Instead of writing it by hand, we can have sortf write it for us. This
macro takes a comparison operator plus any number of generalized variables, and
swaps their values until they are in the order dictated by the operator. In the
simplest case, the arguments could be ordinary variables:

> (setq x 1 y 2 z 3)
3
> (sortf > x y z)
3
> (list x y z)
(3 2 1)



176 GENERALIZED VARIABLES

(defmacro sortf (op &rest places)
(let* ((meths (mapcar #’(lambda (p)

(multiple-value-list
(get-setf-method p)))

places))
(temps (apply #’append (mapcar #’third meths))))

‘(let* ,(mapcar #’list
(mapcan #’(lambda (m)

(append (first m)
(third m)))

meths)
(mapcan #’(lambda (m)

(append (second m)
(list (fifth m))))

meths))
,@(mapcon #’(lambda (rest)

(mapcar
#’(lambda (arg)

‘(unless (,op ,(car rest) ,arg)
(rotatef ,(car rest) ,arg)))

(cdr rest)))
temps)

,@(mapcar #’fourth meths))))

Figure 12.4: A macro which sorts its arguments.

In general, they could be any invertible expressions. Suppose cake is an invertible
function which returns someone’s piece of cake, and bigger is a comparison
function defined on pieces of cake. If we want to enforce the rule that the cake
of moe is no less than the cake of larry, which is no less than that of curly, we
write:

(sortf bigger (cake ’moe) (cake ’larry) (cake ’curly))

The definition of sortf is similar in outline to that of f. It begins with a
let* in which the temporary variables returned by get-setf-method are bound
to the initial values of the generalized variables. The core of sortf is the central
mapcon expression, which generates code to sort these temporary variables. The
code generated by this portion of the macro grows exponentially with the number
of arguments. After sorting, the generalized variables are reassigned using the



12.4 MORE COMPLEX UTILITIES 177

(sortf > x (aref ar (incf i)) (car lst))

expands (in one possible implementation) into:

(let* ((#:g1 x)
(#:g4 ar)
(#:g3 (incf i))
(#:g2 (aref #:g4 #:g3))
(#:g6 lst)
(#:g5 (car #:g6)))

(unless (> #:g1 #:g2)
(rotatef #:g1 #:g2))

(unless (> #:g1 #:g5)
(rotatef #:g1 #:g5))

(unless (> #:g2 #:g5)
(rotatef #:g2 #:g5))

(setq x #:g1)
(system:set-aref #:g2 #:g4 #:g3)
(system:set-car #:g6 #:g5))

Figure 12.5: Expansion of a call to sortf.

forms returned by get-setf-method. The algorithm used is the O(n2) bubble-
sort, but this macro is not intended to be called with huge numbers of arguments.

Figure 12.5 shows the expansion of a call to sortf. In the initial let*, the
arguments and their subforms are carefully evaluated in left-to-right order. Then
appear three expressions which compare and possibly swap the values of the
temporary variables: the first is compared to the second, then the first to the third,
then the second to the third. Finally the the generalized variables are reassigned
left-to-right. Although the issue rarely arises, macro arguments should usually be
assigned left-to-right, as well as being evaluated in this order.

Operators like f and sortf bear a certain resemblance to functions that
take functional arguments. It should be understood that they are something quite
different. A function like find-if takes a function and calls it; a macro like f
takes a name, and makes it the car of an expression. Both f and sortf could
have been written to take functional arguments. For example, f could have been
written:



178 GENERALIZED VARIABLES

(defmacro _f (op place &rest args)
(let ((g (gensym)))
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
‘(let* ((,g ,op)

,@(mapcar #’list vars forms)
(,(car var) (funcall ,g ,access ,@args)))

,set))))

and called ( f #’+ x 1). But the original version of f can do anything this one
could, and since it deals in names, it can also take the name of a macro or special
form. As well as +, you could call, for example, nif (page 150):

> (let ((x 2))
(_f nif x ’p ’z ’n)
x)

P

12.5 Defining Inversions

Section 12.1 explained that any macro call which expands into an invertible
reference will itself be invertible. You don’t have to define operators as macros
just to make them invertible, though. By using defsetf you can tell Lisp how to
invert any function or macro call.

This macro can be used in two ways. In the simplest case, its arguments are
two symbols:

(defsetf symbol-value set)

In the more complicated form, a call to defsetf is like a call to defmacro, with
an additional parameter for the updated value form. For example, this would
define a possible inversion for car:

(defsetf car (lst) (new-car)
‘(progn (rplaca ,lst ,new-car)

,new-car))

There is one important difference between defmacro and defsetf: the latter
automatically creates gensyms for its arguments. With the definition given above,
(setf (car x) y) would expand into:

(let* ((#:g2 x)
(#:g1 y))

(progn (rplaca #:g2 #:g1)
#:g1))



12.5 DEFINING INVERSIONS 179

(defvar *cache* (make-hash-table))

(defun retrieve (key)
(multiple-value-bind (x y) (gethash key *cache*)
(if y

(values x y)
(cdr (assoc key *world*)))))

(defsetf retrieve (key) (val)
‘(setf (gethash ,key *cache*) ,val))

Figure 12.6: An asymmetric inversion.

Thus we can write defsetf expanders without having to worry about variable
capture, or number or order of evaluations.

In CLTL2 Common Lisp, it is possible to define setf inversions directly with
defun, so the previous example could also be written:

(defun (setf car) (new-car lst)
(rplaca lst new-car)
new-car)

The updated value should be the first parameter in such a function. It is also
conventional to return this value as the value of the function.

The examples so far have suggested that generalized variables are supposed
to refer to a place in a data structure. The villain carries his hostage down to
the dungeon, and the rescuing hero carries her back up again; they both follow
the same path, but in different directions. It’s not surprising if people have the
impression that setf must work this way, because all the predefined inversions
seem to be of this form; indeed, place is the conventional name for a parameter
which is to be inverted.

In principle, setf is more general: an access form and its inversion need not
even operate on the same data structure. Suppose that in some application we
want to cache database updates. This could be necessary, for example, if it were
not efficient to do real updates on the fly, or if all the updates had to be verified
for consistency before committing to them.

Suppose that *world* is the actual database. For simplicity, we will make it
an assoc-list whose elements are of the form (key . val). Figure 12.6 shows a
lookup function called retrieve. If *world* is

((a . 2) (b . 16) (c . 50) (d . 20) (f . 12))



180 GENERALIZED VARIABLES

then

> (retrieve ’c)
50

Unlike a call to car, a call to retrieve does not refer to a specific place in a data
structure. The return value could come from one of two places. And the inversion
of retrieve, also defined in Figure 12.6, only refers to one of them:

> (setf (retrieve ’n) 77)
77
> (retrieve ’n)
77
T

This lookup returns a second value of t, indicating that the answer was found in
the cache.

Like macros themselves, generalized variables are an abstraction of remarkable
power. There is probably more to be discovered here. Certainly individual users
are likely to discover ways in which the use of generalized variables could lead
to more elegant or more powerful programs. But it may also be possible to
use setf inversion in new ways, or to discover other classes of similarly useful
transformations.◦




