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Classic Macros

This chapter shows how to define the most commonly used types of macros.
They fall into three categories—with a fair amount of overlap. The first group
are macros which create context. Any operator which causes its arguments to
be evaluated in a new context will probably have to be defined as a macro. The
first two sections describe the two basic types of context, and show how to define
macros for each.

The next three sections describe macros for conditional and repeated evalua-
tion. An operator whose arguments are to be evaluated less than once, or more
than once, must also be defined as a macro. There is no sharp distinction between
operators for conditional and repeated evaluation: some of the examples in this
chapter do both (as well as binding). The final section explains another similarity
between conditional and repeated evaluation: in some cases, both can be done
with functions.

11.1 Creating Context

Context here has two senses. One sort of context is a lexical environment. The
let special form creates a new lexical environment; the expressions in the body
of a let will be evaluated in an environment which may contain new variables.
If x is set to a at the toplevel, then

(let ((x ’b)) (list x))

will nonetheless return (b), because the call to list will be made in an environ-
ment containing a new x, whose value is b.

143
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(defmacro our-let (binds &body body)
‘((lambda ,(mapcar #’(lambda (x)

(if (consp x) (car x) x))
binds)

,@body)
,@(mapcar #’(lambda (x)

(if (consp x) (cadr x) nil))
binds)))

Figure 11.1: Macro implementation of let.

An operator which is to have a body of expressions must usually be defined as
a macro. Except for cases like prog1 and progn, the purpose of such an operator
will usually be to cause the body to be evaluated in some new context. A macro
will be needed to wrap context-creating code around the body, even if the context
does not include new lexical variables.

Figure 11.1 shows how let could be defined as a macro on lambda. An
our-let expands into a function application—

(our-let ((x 1) (y 2))
(+ x y))

expands into

((lambda (x y) (+ x y)) 1 2)

Figure 11.2 contains three new macros which establish lexical environments.
Section 7.5 used when-bind as an example of parameter list destructuring, so this
macro has already been described on page 94. The more general when-bind*
takes a list of pairs of the form (symbol expression)—the same form as the
first argument to let. If any expression returns nil, the whole when-bind*
expression returns nil. Otherwise its body will be evaluated with each symbol
bound as if by let*:

> (when-bind* ((x (find-if #’consp ’(a (1 2) b)))
(y (find-if #’oddp x)))

(+ y 10))
11

Finally, the macro with-gensyms is itself for use in writing macros. Many
macro definitions begin with the creation of gensyms, sometimes quite a number
of them. The macro with-redraw (page 115) had to create five:
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(defmacro when-bind ((var expr) &body body)
‘(let ((,var ,expr))

(when ,var
,@body)))

(defmacro when-bind* (binds &body body)
(if (null binds)

‘(progn ,@body)
‘(let (,(car binds))

(if ,(caar binds)
(when-bind* ,(cdr binds) ,@body)))))

(defmacro with-gensyms (syms &body body)
‘(let ,(mapcar #’(lambda (s)

‘(,s (gensym)))
syms)

,@body))

Figure 11.2: Macros which bind variables.

(defmacro with-redraw ((var objs) &body body)
(let ((gob (gensym))

(x0 (gensym)) (y0 (gensym))
(x1 (gensym)) (y1 (gensym)))

...))

Such definitions are simplified by with-gensyms, which binds a whole list of
variables to gensyms. With the new macro we would write just:

(defmacro with-redraw ((var objs) &body body)
(with-gensyms (gob x0 y0 x1 y1)
...))

This new macro will be used throughout the remaining chapters.
If we want to bind some variables and then, depending on some condition,

evaluate one of a set of expressions, we just use a conditional within a let:

(let ((sun-place ’park) (rain-place ’library))
(if (sunny)

(visit sun-place)
(visit rain-place)))
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(defmacro condlet (clauses &body body)
(let ((bodfn (gensym))

(vars (mapcar #’(lambda (v) (cons v (gensym)))
(remove-duplicates
(mapcar #’car

(mappend #’cdr clauses))))))
‘(labels ((,bodfn ,(mapcar #’car vars)

,@body))
(cond ,@(mapcar #’(lambda (cl)

(condlet-clause vars cl bodfn))
clauses)))))

(defun condlet-clause (vars cl bodfn)
‘(,(car cl) (let ,(mapcar #’cdr vars)

(let ,(condlet-binds vars cl)
(,bodfn ,@(mapcar #’cdr vars))))))

(defun condlet-binds (vars cl)
(mapcar #’(lambda (bindform)

(if (consp bindform)
(cons (cdr (assoc (car bindform) vars))

(cdr bindform))))
(cdr cl)))

Figure 11.3: Combination of cond and let.

Unfortunately, there is no convenient idiom for the opposite situation, where
we always want to evaluate the same code, but where the bindings must vary
depending on some condition.

Figure 11.3 contains a macro intended for such situations. As its name
suggests, condlet behaves like the offspring of cond and let. It takes as
arguments a list of binding clauses, followed by a body of code. Each of the
binding clauses is guarded by a test expression; the body of code will be evaluated
with the bindings specified by the first binding clause whose test expression returns
true. Variables which occur in some clauses and not others will be bound to nil
if the successful clause does not specify bindings for them:
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> (condlet (((= 1 2) (x (princ ’a)) (y (princ ’b)))
((= 1 1) (y (princ ’c)) (x (princ ’d)))
(t (x (princ ’e)) (z (princ ’f))))

(list x y z))
CD
(D C NIL)

The definition of condlet can be understood as a generalization of the def-
inition of our-let. The latter makes its body into a function, which is applied
to the results of evaluating the initial-value forms. A condlet expands into code
which defines a local function with labels; within it a cond clause determines
which set of initial-value forms will be evaluated and passed to the function.

Notice that the expander uses mappend instead of mapcan to extract the
variable names from the binding clauses. This is because mapcan is destructive,
and as Section 10.3 warned, it is dangerous to modify parameter list structure.

11.2 The with- Macro

There is another kind of context besides a lexical environment. In the broader
sense, the context is the state of the world, including the values of special variables,
the contents of data structures, and the state of things outside Lisp. Operators
which build this kind of context must be defined as macros too, unless their code
bodies are to be packaged up in closures.

The names of context-building macros often begin with with-. The most
commonly used macro of this type is probably with-open-file. Its body is
evaluated with a newly opened file bound to a user-supplied variable:

(with-open-file (s "dump" :direction :output)
(princ 99 s))

After evaluation of this expression the file "dump" will automatically be closed,
and its contents will be the two characters "99".

This operator clearly has to be defined as a macro,because it binds s. However,
operators which cause forms to be evaluated in a new context must be defined as
macros anyway. The ignore-errorsmacro, new in CLTL2, causes its arguments
to be evaluated as if in a progn. If an error occurs at any point, the whole
ignore-errors form simply returns nil. (This would be useful, for example,
when reading input typed by the user.) Though ignore-errors creates no
variables, it still must be defined as a macro, because its arguments are evaluated
in a new context.

Generally, macros which create context will expand into a block of code;
additional expressions may be placed before the body, after it, or both. If code
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occurs after the body, its purpose may be to leave the system in a consistent
state—to clean up something. For example, with-open-file has to close the
file it opened. In such situations, it is typical to make the context-creating macro
expand into an unwind-protect.

The purpose of unwind-protect is to ensure that certain expressions are
evaluated even if execution is interrupted. It takes one or more arguments, which
are evaluated in order. If all goes smoothly it will return the value of the first
argument, like a prog1. The difference is, the remaining arguments will be
evaluated even if an error or throw interrupts evaluation of the first.

> (setq x ’a)
A
> (unwind-protect

(progn (princ "What error?")
(error "This error."))

(setq x ’b))
What error?
>>Error: This error.

The unwind-protect form as a whole yields an error. However, after returning
to the toplevel, we notice that the second argument still got evaluated:

> x
B

Because with-open-file expands into an unwind-protect, the file it opens
will usually be closed even if an error occurs during the evaluation of its body.

Context-creating macros are mostly written for specific applications. As an
example, suppose we are writing a program which deals with multiple, remote
databases. The program talks to one database at a time, indicated by the global
variable *db*. Before using a database, we have to lock it, so that no one else can
use it at the same time. When we are finished we have to release the lock. If we
want the value of the query q on the database db, we might say something like:

(let ((temp *db*))
(setq *db* db)
(lock *db*)
(prog1 (eval-query q)

(release *db*)
(setq *db* temp)))

With a macro we can hide all this bookkeeping. Figure 11.4 defines a macro
which will allow us to deal with databases at a higher level of abstraction. Using
with-db, we would say just:
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Pure macro:

(defmacro with-db (db &body body)
(let ((temp (gensym)))
‘(let ((,temp *db*))

(unwind-protect
(progn
(setq *db* ,db)
(lock *db*)
,@body)

(progn
(release *db*)
(setq *db* ,temp))))))

Combination of macro and function:

(defmacro with-db (db &body body)
(let ((gbod (gensym)))
‘(let ((,gbod #’(lambda () ,@body)))

(declare (dynamic-extent ,gbod))
(with-db-fn *db* ,db ,gbod))))

(defun with-db-fn (old-db new-db body)
(unwind-protect
(progn
(setq *db* new-db)
(lock *db*)
(funcall body))

(progn
(release *db*)
(setq *db* old-db))))

Figure 11.4: A typical with- macro.

(with-db db
(eval-query q))

Calling with-db is also safer, because it expands into an unwind-protect
instead of a simple prog1.

The two definitions of with-db in Figure 11.4 illustrate two possible ways
to write this kind of macro. The first is a pure macro, the second a combination
of a function and a macro. The second approach becomes more practical as the
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(defmacro if3 (test t-case nil-case ?-case)
‘(case ,test

((nil) ,nil-case)
(? ,?-case)
(t ,t-case)))

(defmacro nif (expr pos zero neg)
(let ((g (gensym)))
‘(let ((,g ,expr))

(cond ((plusp ,g) ,pos)
((zerop ,g) ,zero)
(t ,neg)))))

Figure 11.5: Macros for conditional evaluation.

desired with- macro grows in complexity.
In CLTL2 Common Lisp, the dynamic-extent declaration allows the closure

containing the body to be allocated more efficiently (in CLTL1 implementations,
it will be ignored). We only need this closure for the duration of the call to
with-db-fn, and the declaration says as much, allowing the compiler to allocate
space for it on the stack. This space will be reclaimed automatically on exit from
the let expression, instead of being reclaimed later by the garbage-collector.

11.3 Conditional Evaluation

Sometimes we want an argument in a macro call to be evaluated only under
certain conditions. This is beyond the ability of functions, which always evaluate
all their arguments. Built-in operators like if, and, and cond protect some of
their arguments from evaluation unless other arguments return certain values. For
example, in this expression

(if t
’phew
(/ x 0))

the third argument would cause a division-by-zero error if it were evaluated. But
since only the first two arguments ever will be evaluated, the if as a whole will
always safely return phew.

We can create new operators of this sort by writing macros which expand into
calls to the existing ones. The two macros in Figure 11.5 are two of many possible
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variations on if. The definition of if3 shows how we could define a conditional
for a three-valued logic. Instead of treating nil as false and everything else
as true, this macro considers three categories of truth: true, false, and uncertain,
represented as ?. It might be used as in the following description of a five year-old:

(while (not sick)
(if3 (cake-permitted)

(eat-cake)
(throw ’tantrum nil)
(plead-insistently)))

The new conditional expands into a case. (The nil key has to be enclosed within
a list because a nil key alone would be ambiguous.) Only one of the last three
arguments will be evaluated, depending on the value of the first.

The name nif stands for “numeric if.” Another implementation of this macro
appeared on page 86. It takes a numeric expression as its first argument, and
depending on its sign evaluates one of the remaining three arguments.

> (mapcar #’(lambda (x)
(nif x ’p ’z ’n))

’(0 1 -1))
(Z P N)

Figure 11.6 contains several more macros which take advantage of conditional
evaluation. The macro in is to test efficiently for set membership. When you
want to test whether an object is one of a set of alternatives, you could express the
query as a disjunction:

(let ((x (foo)))
(or (eql x (bar)) (eql x (baz))))

or you could express it in terms of set membership:

(member (foo) (list (bar) (baz)))

The latter is more abstract, but less efficient. The member expression incurs
unnecessary costs from two sources. It conses, because it must assemble the
alternatives into a list for member to search. And to form the alternatives into a
list they all have to be evaluated, even though some of the values may never be
needed. If the value of (foo) is equal to the value of (bar), then there is no need
to evaluate (baz). Whatever its conceptual advantages, this is not a good way to
use member. We can get the same abstraction more efficiently with a macro: in
combines the abstraction of member with the efficiency of or. The equivalent in
expression
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(defmacro in (obj &rest choices)
(let ((insym (gensym)))
‘(let ((,insym ,obj))

(or ,@(mapcar #’(lambda (c) ‘(eql ,insym ,c))
choices)))))

(defmacro inq (obj &rest args)
‘(in ,obj ,@(mapcar #’(lambda (a)

‘’,a)
args)))

(defmacro in-if (fn &rest choices)
(let ((fnsym (gensym)))
‘(let ((,fnsym ,fn))

(or ,@(mapcar #’(lambda (c)
‘(funcall ,fnsym ,c))

choices)))))

(defmacro >case (expr &rest clauses)
(let ((g (gensym)))
‘(let ((,g ,expr))

(cond ,@(mapcar #’(lambda (cl) (>casex g cl))
clauses)))))

(defun >casex (g cl)
(let ((key (car cl)) (rest (cdr cl)))
(cond ((consp key) ‘((in ,g ,@key) ,@rest))

((inq key t otherwise) ‘(t ,@rest))
(t (error "bad >case clause")))))

Figure 11.6: Macros for conditional evaluation.

(in (foo) (bar) (baz))

has the same shape as the member expression, but expands into

(let ((#:g25 (foo)))
(or (eql #:g25 (bar))

(eql #:g25 (baz))))

As is often the case, when faced with a choice between a clean idiom and an
efficient one, we go between the horns of the dilemma by writing a macro which
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transforms the former into the latter.
Pronounced “in queue,” inq is a quoting variant of in, as setq used to be of

set. The expression

(inq operator + - *)

expands into

(in operator ’+ ’- ’*)

As member does by default, in and inq use eql to test for equality. When
you want to use some other test—or any other function of one argument—you
can use the more general in-if. What in is to member, in-if is to some. The
expression

(member x (list a b) :test #’equal)

can be duplicated by

(in-if #’(lambda (y) (equal x y)) a b)

and

(some #’oddp (list a b))

becomes

(in-if #’oddp a b)

Using a combination of cond and in, we can define a useful variant of case.
The Common Lisp casemacro assumes that its keys are constants. Sometimes we
may want the behavior of a case expression, but with keys which are evaluated.
For such situations we define >case, like case except that the keys guarding
each clause are evaluated before comparison. (The > in the name is intended to
suggest the arrow notation used to represent evaluation.) Because >case uses in,
it evaluates no more of the keys than it needs to.

Since keys can be Lisp expressions, there is no way to tell if (x y) is a call or
a list of two keys. To avoid ambiguity, keys (other than t and otherwise) must
always be given in a list, even if there is only one of them. In case expressions,
nil may not appear as the car of a clause on grounds of ambiguity. In a >case
expression, nil is no longer ambiguous as the car of a clause, but it does mean
that the rest of the clause will never be evaluated.

For clarity, the code that generates the expansion of each >case clause is
defined as a separate function, >casex. Notice that >casex itself uses inq.
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(defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

(defmacro till (test &body body)
‘(do ()

(,test)
,@body))

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))

(,gstop ,stop))
((> ,var ,gstop))

,@body)))

Figure 11.7: Simple iteration macros.

11.4 Iteration

Sometimes the trouble with functions is not that their arguments are always
evaluated, but that they are evaluated only once. Because each argument to a
function will be evaluated exactly once, if we want to define an operator which
takes some body of expressions and iterates through them, we will have to define
it as a macro.

The simplest example would be a macro which evaluated its arguments in
sequence forever:

(defmacro forever (&body body)
‘(do ()

(nil)
,@body))

This is just what the built-in loop macro does if you give it no loop keywords. It
might seem that there is not much future (or too much future) in looping forever.
But combined with block and return-from, this kind of macro becomes the
most natural way to express loops where termination is always in the nature of an
emergency.

Some of the simplest macros for iteration are shown in Figure 11.7. We
have already seen while (page 91), whose body will be evaluated while a test
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expression returns true. Its converse is till, which does the same while a test
expression returns false. Finally for, also seen before (page 129), iterates for a
range of numbers.

By defining these macros to expand into dos, we enable the use of go and
returnwithin their bodies. As do inherits these rights from block and tagbody,
while, till, and for inherit them from do. As explained on page 131, the nil
tag of the implicit block around do will be captured by the macros defined in
Figure 11.7. This is more of a feature than a bug, but it should at least be mentioned
explicitly.

Macros are indispensable when we need to define more powerful iteration
constructs. Figure 11.8 contains two generalizations of dolist; both evaluate
their body with a tuple of variables bound to successive subsequences of a list.
For example, given two parameters, do-tuples/o will iterate by pairs:

> (do-tuples/o (x y) ’(a b c d)
(princ (list x y)))

(A B)(B C)(C D)
NIL

Given the same arguments, do-tuples/c will do the same thing, then wrap
around to the front of the list:

> (do-tuples/c (x y) ’(a b c d)
(princ (list x y)))

(A B)(B C)(C D)(D A)
NIL

Both macros return nil, unless an explicit return occurs within the body.
This kind of iteration is often needed in programs which deal with some notion

of a path. The suffixes /o and /c are intended to suggest that the two versions
traverse open and closed paths, respectively. For example, if points is a list of
points and (drawline x y) draws the line between x and y, then to draw the path
from the first point to the last we write.

(do-tuples/o (x y) points (drawline x y))

whereas, if points is a list of the vertices of a polygon, to draw its perimeter we
write

(do-tuples/c (x y) points (drawline x y))

The list of parameters given as the first argument can be any length, and
iteration will proceed by tuples of that length. If just one parameter is given, both
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(defmacro do-tuples/o (parms source &body body)
(if parms

(let ((src (gensym)))
‘(prog ((,src ,source))

(mapc #’(lambda ,parms ,@body)
,@(map0-n #’(lambda (n)

‘(nthcdr ,n ,src))
(1- (length parms))))))))

(defmacro do-tuples/c (parms source &body body)
(if parms

(with-gensyms (src rest bodfn)
(let ((len (length parms)))
‘(let ((,src ,source))

(when (nthcdr ,(1- len) ,src)
(labels ((,bodfn ,parms ,@body))
(do ((,rest ,src (cdr ,rest)))

((not (nthcdr ,(1- len) ,rest))
,@(mapcar #’(lambda (args)

‘(,bodfn ,@args))
(dt-args len rest src))

nil)
(,bodfn ,@(map1-n #’(lambda (n)

‘(nth ,(1- n)
,rest))

len))))))))))

(defun dt-args (len rest src)
(map0-n #’(lambda (m)

(map1-n #’(lambda (n)
(let ((x (+ m n)))
(if (>= x len)

‘(nth ,(- x len) ,src)
‘(nth ,(1- x) ,rest))))

len))
(- len 2)))

Figure 11.8: Macros for iteration by subsequences.
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(do-tuples/c (x y z) ’(a b c d)
(princ (list x y z)))

expands into:

(let ((#:g2 ’(a b c d)))
(when (nthcdr 2 #:g2)
(labels ((#:g4 (x y z)

(princ (list x y z))))
(do ((#:g3 #:g2 (cdr #:g3)))

((not (nthcdr 2 #:g3))
(#:g4 (nth 0 #:g3)

(nth 1 #:g3)
(nth 0 #:g2))

(#:g4 (nth 1 #:g3)
(nth 0 #:g2)
(nth 1 #:g2))

nil)
(#:g4 (nth 0 #:g3)

(nth 1 #:g3)
(nth 2 #:g3))))))

Figure 11.9: Expansion of a call to do-tuples/c.

degenerate to dolist:

> (do-tuples/o (x) ’(a b c) (princ x))
ABC
NIL
> (do-tuples/c (x) ’(a b c) (princ x))
ABC
NIL

The definition of do-tuples/c is more complex than that of do-tuples/o,
because it has to wrap around on reaching the end of the list. If there are n
parameters, do-tuples/cmust do n−1 more iterations before returning:

> (do-tuples/c (x y z) ’(a b c d)
(princ (list x y z)))

(A B C)(B C D)(C D A)(D A B)
NIL
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> (do-tuples/c (w x y z) ’(a b c d)
(princ (list w x y z)))

(A B C D)(B C D A)(C D A B)(D A B C)
NIL

The expansion of the former call to do-tuples/c is shown in Figure 11.9. The
hard part to generate is the sequence of calls representing the wrap around to the
front of the list. These calls (in this case, two of them) are generated by dt-args.

11.5 Iteration with Multiple Values

The built-in do macros have been around longer than multiple return values.
Fortunately do can evolve to suit the new situation, because the evolution of Lisp
is in the hands of the programmer. Figure 11.10 contains a version of do* adapted
for multiple values. With mvdo*, each of the initial clauses can bind more than
one variable:

> (mvdo* ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))

((> x 5) (list x y z))
(princ (list x y z)))

(1 0 0)(2 0 2)(3 2 3)(4 3 4)(5 4 5)
(6 5 6)

This kind of iteration is useful, for example, in interactive graphics programs,
which often have to deal with multiple quantities like coordinates and regions.

Suppose that we want to write a simple interactive game, in which the object
is to avoid being squashed between two pursuing objects. If the two pursuers both
hit you at the same time, you lose; if they crash into one another first, you win.
Figure 11.11 shows how the main loop of this game could be written using mvdo*.

It is also possible to write an mvdo, which binds its local variables in parallel:

> (mvdo ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))
((> x 5) (list x y z))

(princ (list x y z)))
(1 0 0)(2 0 1)(3 1 2)(4 2 3)(5 3 4)
(6 4 5)

The need for psetq in defining do was described on page 96. To define mvdo,
we need a multiple-value version of psetq. Since Common Lisp doesn’t have◦
one, we have to write it ourselves, as in Figure 11.12. The new macro works as
follows:
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(defmacro mvdo* (parm-cl test-cl &body body)
(mvdo-gen parm-cl parm-cl test-cl body))

(defun mvdo-gen (binds rebinds test body)
(if (null binds)

(let ((label (gensym)))
‘(prog nil

,label
(if ,(car test)

(return (progn ,@(cdr test))))
,@body
,@(mvdo-rebind-gen rebinds)
(go ,label)))

(let ((rec (mvdo-gen (cdr binds) rebinds test body)))
(let ((var/s (caar binds)) (expr (cadar binds)))
(if (atom var/s)

‘(let ((,var/s ,expr)) ,rec)
‘(multiple-value-bind ,var/s ,expr ,rec))))))

(defun mvdo-rebind-gen (rebinds)
(cond ((null rebinds) nil)

((< (length (car rebinds)) 3)
(mvdo-rebind-gen (cdr rebinds)))
(t
(cons (list (if (atom (caar rebinds))

’setq
’multiple-value-setq)

(caar rebinds)
(third (car rebinds)))

(mvdo-rebind-gen (cdr rebinds))))))

Figure 11.10: Multiple value binding version of do*.

> (let ((w 0) (x 1) (y 2) (z 3))
(mvpsetq (w x) (values ’a ’b) (y z) (values w x))
(list w x y z))

(A B 0 1)

The definition of mvpsetq relies on three utility functions: mklist (page 45),
group (page 47), and shuffle, defined here, which interleaves two lists:
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(mvdo* (((px py) (pos player) (move player mx my))
((x1 y1) (pos obj1) (move obj1 (- px x1)

(- py y1)))
((x2 y2) (pos obj2) (move obj2 (- px x2)

(- py y2)))
((mx my) (mouse-vector) (mouse-vector))
(win nil (touch obj1 obj2))
(lose nil (and (touch obj1 player)

(touch obj2 player))))
((or win lose) (if win ’win ’lose))

(clear)
(draw obj1)
(draw obj2)
(draw player))

(pos obj) returns two values x,y representing the position of obj. Initially,
the three objects have random positions.

(move obj dx dy) moves the object obj depending on its type and the vector
〈dx,dy〉. Returns two values x,y indicating the new position.

(mouse-vector) returns two values dx,dy indicating the current movement
of the mouse.

(touch obj1 obj2) returns true if obj1 and obj2 are touching.

(clear) clears the game region.

(draw obj) draws obj at its current position.

Figure 11.11: A game of squash.

> (shuffle ’(a b c) ’(1 2 3 4))
(A 1 B 2 C 3 4)

With mvpsetq, we can define mvdo as in Figure 11.13. Like condlet, this
macro uses mappend instead of mapcar to avoid modifying the original macro
call. The mappend-mklist idiom flattens a tree by one level:

> (mappend #’mklist ’((a b c) d (e (f g) h) ((i)) j))
(A B C D E (F G) H (I) J)
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(defmacro mvpsetq (&rest args)
(let* ((pairs (group args 2))

(syms (mapcar #’(lambda (p)
(mapcar #’(lambda (x) (gensym))

(mklist (car p))))
pairs)))

(labels ((rec (ps ss)
(if (null ps)

‘(setq
,@(mapcan #’(lambda (p s)

(shuffle (mklist (car p))
s))

pairs syms))
(let ((body (rec (cdr ps) (cdr ss))))
(let ((var/s (caar ps))

(expr (cadar ps)))
(if (consp var/s)

‘(multiple-value-bind ,(car ss)
,expr

,body)
‘(let ((,@(car ss) ,expr))

,body)))))))
(rec pairs syms))))

(defun shuffle (x y)
(cond ((null x) y)

((null y) x)
(t (list* (car x) (car y)

(shuffle (cdr x) (cdr y))))))

Figure 11.12: Multiple value version of psetq.

To help in understanding this rather large macro, Figure 11.14 contains a sample
expansion.

11.6 Need for Macros

Macros aren’t the only way to protect arguments against evaluation. Another is to
wrap them in closures. Conditional and repeated evaluation are similar because
neither problem inherently requires macros. For example, we could write a version
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(defmacro mvdo (binds (test &rest result) &body body)
(let ((label (gensym))

(temps (mapcar #’(lambda (b)
(if (listp (car b))

(mapcar #’(lambda (x)
(gensym))

(car b))
(gensym)))

binds)))
‘(let ,(mappend #’mklist temps)

(mvpsetq ,@(mapcan #’(lambda (b var)
(list var (cadr b)))

binds
temps))

(prog ,(mapcar #’(lambda (b var) (list b var))
(mappend #’mklist (mapcar #’car binds))
(mappend #’mklist temps))

,label
(if ,test

(return (progn ,@result)))
,@body
(mvpsetq ,@(mapcan #’(lambda (b)

(if (third b)
(list (car b)

(third b))))
binds))

(go ,label)))))

Figure 11.13: Multiple value binding version of do.

of if as a function:

(defun fnif (test then &optional else)
(if test

(funcall then)
(if else (funcall else))))

We would protect the then and else arguments by expressing them as closures,
so instead of

(if (rich) (go-sailing) (rob-bank))
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(mvdo ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))

((> x 5) (list x y z))
(princ (list x y z)))

expands into:

(let (#:g2 #:g3 #:g4)
(mvpsetq #:g2 1

(#:g3 #:g4) (values 0 0))
(prog ((x #:g2) (y #:g3) (z #:g4))

#:g1
(if (> x 5)

(return (progn (list x y z))))
(princ (list x y z))
(mvpsetq x (1+ x)

(y z) (values z x))
(go #:g1)))

Figure 11.14: Expansion of a call to mvdo.

we would say

(fnif (rich)
#’(lambda () (go-sailing))
#’(lambda () (rob-bank)))

If all we want is conditional evaluation, macros aren’t absolutely necessary. They
just make programs cleaner. However, macros are necessary when we want to
take apart argument forms, or bind variables passed as arguments.

The same applies to macros for iteration. Although macros offer the only way
to define an iteration construct which can be followed by a body of expressions,
it is possible to do iteration with functions, so long as the body of the loop is
packaged up in a function itself.1 The built-in function mapc, for example, is the
functional counterpart of dolist. The expression

(dolist (b bananas)
(peel b)
(eat b))
1It’s not impossible to write an iteration function which doesn’t need its argument wrapped up in

a function. We could write a function that called eval on expressions passed to it as arguments. For
an explanation of why it’s usually bad to call eval, see page 278.
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has the same side-effects as

(mapc #’(lambda (b)
(peel b)
(eat b))

bananas)

(though the former returns nil and the latter returns the list bananas). We could
likewise implement forever as a function,

(defun forever (fn)
(do ()

(nil)
(funcall fn)))

if we were willing to pass it a closure instead of a body of expressions.
However, iteration constructs usually want to do more than just iterate, as

forever does: they usually want to do a combination of binding and iteration.
With a function, the prospects for binding are limited. If you want to bind variables
to successive elements of lists, you can use one of the mapping functions. But
if the requirements get much more complicated than that, you’ll have to write a
macro.




