
7

Macros

Lisp’s macro facility allows you to define operators that are implemented by
transformation. The definition of a macro is essentially a function that generates
Lisp code—a program that writes programs. From these small beginnings arise
great possibilities, and also unexpected hazards. Chapters 7–10 form a tutorial
on macros. This chapter explains how macros work, gives techniques for writing
and testing them, and looks at the issue of macro style.

7.1 How Macros Work

Since macros can be called and return values, they tend to be associated with func-
tions. Macro definitions sometimes resemble function definitions, and speaking
informally, people call do, which is actually a macro, a “built-in function.” But
pushing the analogy too far can be a source of confusion. Macros work differently
from normal functions, and knowing how and why macros are different is the
key to using them correctly. A function produces results, but a macro produces
expressions—which, when evaluated, produce results.

The best way to begin is to move straight into an example. Suppose we want
to write a macro nil!, which sets its argument to nil. We want (nil! x) to
have the same effect as (setq x nil). We do it by defining nil! as a macro
which turns instances of the first form into instances of the second.

> (defmacro nil! (var)
(list ’setq var nil))

NIL!

82



7.1 HOW MACROS WORK 83

Paraphrased in English, this definition tells Lisp: “Whenever you see an expression
of the form (nil! var), turn it into one of the form (setq var nil) before
evaluating it.”

The expression generated by the macro will be evaluated in place of the original
macro call. A macro call is a list whose first element is the name of a macro.
What happens when we type the macro call (nil! x) into the toplevel? Lisp
notices that nil! is the name of a macro, and

1. builds the expression specified by the definition above, then

2. evaluates that expression in place of the original macro call.

The step of building the new expression is called macroexpansion. Lisp looks
up the definition of nil!, which shows how to construct a replacement for the
macro call. The definition of nil! is applied like a function to the expressions
given as arguments in the macro call. It returns a list of three elements: setq,
the expression given as the argument to the macro, and nil. In this case, the
argument to nil! is x, and the macroexpansion is (setq x nil).

After macroexpansion comes a second step, evaluation. Lisp evaluates the
macroexpansion (setq x nil) as if you had typed that in the first place. Evalu-
ation does not always come immediately after expansion, as it does at the toplevel.
A macro call occurring in the definition of a function will be expanded when the
function is compiled, but the expansion—or the object code which results from
it—won’t be evaluated until the function is called.

Many of the difficulties you might encounter with macros can be avoided by
maintaining a sharp distinction between macroexpansion and evaluation. When
writing macros, know which computations are performed during macroexpansion,
and which during evaluation, for the two steps generally operate on objects of
two different sorts. The macroexpansion step deals with expressions, and the
evaluation step deals with their values.

Sometimes macroexpansioncan be more complicated than it was in the case of
nil!. The expansion of nil! was a call to a built-in special form, but sometimes
the expansion of a macro will be yet another macro call, like a Russian doll which
contains another doll inside it. In such cases, macroexpansion simply continues
until it arrives at an expression which is no longer a macro call. The process can
take arbitrarily many steps, so long as it terminates eventually.

Many languages offer some form of macro, but Lisp macros are singularly
powerful. When a file of Lisp is compiled, a parser reads the source code and sends
its output to the compiler. Here’s the stroke of genius: the output of the parser
consists of lists of Lisp objects. With macros, we can manipulate the program
while it’s in this intermediate form between parser and compiler. If necessary,
these manipulations can be very extensive. A macro generating its expansion has



84 MACROS

at its disposition the full power of Lisp. Indeed, a macro is really a Lisp function—
one which happens to return expressions. The definition of nil! contains a single
call to list, but another macro might invoke a whole subprogram to generate its
expansion.

Being able to change what the compiler sees is almost like being able to rewrite
it. We can add any construct to the language that we can define by transformation
into existing constructs.

7.2 Backquote

Backquote is a special version of quote which can be used to create templates
for Lisp expressions. One of the most common uses of backquote is in macro
definitions.

The backquote character, ‘, is so named because it resembles a regular quote,
’, reversed. When backquote alone is affixed to an expression, it behaves just like
quote:

‘(a b c) is equal to ’(a b c).

Backquote becomes useful only when it appears in combination with comma,
,, and comma-at, ,@. If backquote makes a template, comma makes a slot within
a template. A backquoted list is equivalent to a call to list with the elements
quoted. That is,

‘(a b c) is equal to (list ’a ’b ’c).

Within the scope of a backquote, a comma tells Lisp: “turn off the quoting.”
When a comma appears before one of the elements of the list, it has the effect of
cancelling out the quote that would have been put there. So

‘(a ,b c ,d) is equal to (list ’a b ’c d).

Instead of the symbol b, its value is inserted into the resulting list. Commas work
no matter how deeply they appear within a nested list,

> (setq a 1 b 2 c 3)
3
> ‘(a ,b c)
(A 2 C)
> ‘(a (,b c))
(A (2 C))



7.2 BACKQUOTE 85

and they may even appear within quotes, or within quoted sublists:

> ‘(a b ,c (’,(+ a b c)) (+ a b) ’c ’((,a ,b)))
(A B 3 (’6) (+ A B) ’C ’((1 2)))

One comma counteracts the effect of one backquote, so commas must match
backquotes. Say that a comma is surrounded by a particular operator if the operator
is prepended to the comma, or prepended to an expression which contains it. In
‘(,a ,(b ‘,c))), for example, the last comma is surrounded by one comma
and two backquotes. The general rule is: a comma surrounded by n commas must
be surrounded by at least n+1 backquotes. An obvious corollary is that commas
may not appear outside of a backquoted expression. Backquotes and commas can
be nested, so long as they obey the rule above. Any of the following expressions
would generate an error if typed into the toplevel:

,x ‘(a ,,b c) ‘(a ,(b ,c) d) ‘(,,‘a)

Nested backquotes are only likely to be needed in macro-defining macros. Both
topics are discussed in Chapter 16.

Backquote is usually used for making lists.1 Any list generated by backquote
can also be generated by using list and regular quotes. The advantage of
backquote is just that it makes expressions easier to read, because a backquoted
expression resembles the expression it will produce. In the previous section we
defined nil! as:

(defmacro nil! (var)
(list ’setq var nil))

With backquote the same macro can be defined as:

(defmacro nil! (var)
‘(setq ,var nil))

which in this case is not all that different. The longer the macro definition,
however, the more important it is to use backquote. Figure 7.1 contains two
possible definitions of nif, a macro which does a three-way numeric if. 2

The first argument should evaluate to a number. Then the second, third, or
fourth argument is evaluated, depending on whether the first was positive, zero,
or negative:

> (mapcar #’(lambda (x)
(nif x ’p ’z ’n))

’(0 2.5 -8))
(Z P N)



86 MACROS

With backquote:

(defmacro nif (expr pos zero neg)
‘(case (truncate (signum ,expr))

(1 ,pos)
(0 ,zero)
(-1 ,neg)))

Without backquote:

(defmacro nif (expr pos zero neg)
(list ’case

(list ’truncate (list ’signum expr))
(list 1 pos)
(list 0 zero)
(list -1 neg)))

Figure 7.1: A macro defined with and without backquote.

The two definitions in Figure 7.1 define the same macro, but the first uses
backquote, while the second builds its expansion by explicit calls to list. From
the first definition it’s easy to see that (nif x ’p ’z ’n), for example, expands
into

(case (truncate (signum x))
(1 ’p)
(0 ’z)
(-1 ’n))

because the body of the macro definition looks just like the expansion it generates.
To understand the second version, without backquote, you have to trace in your
head the building of the expansion.

Comma-at, ,@, is a variant of comma. It behaves like comma, with one
difference: instead of merely inserting the value of the expression to which it
is affixed, as comma does, comma-at splices it. Splicing can be thought of as
inserting while removing the outermost level of parentheses:

> (setq b ’(1 2 3))
(1 2 3)

1Backquote can also be used to create vectors, but this is rarely done in macro definitions.
2This macro is defined a little oddly to avoid using gensyms. A better definition is given on

page 150.



7.2 BACKQUOTE 87

> ‘(a ,b c)
(A (1 2 3) C)
> ‘(a ,@b c)
(A 1 2 3 C)

The comma causes the list (1 2 3) to be inserted in place of b, while the comma-
at causes the elements of the list to be inserted there. There are some additional
restrictions on the use of comma-at:

1. In order for its argument to be spliced, comma-at must occur within a
sequence. It’s an error to say something like ‘,@b because there is nowhere
to splice the value of b.

2. The object to be spliced must be a list, unless it occurs last. The expression
‘(a ,@1) will evaluate to (a . 1), but attempting to splice an atom into
the middle of a list, as in ‘(a ,@1 b), will cause an error.

Comma-at tends to be used in macros which take an indeterminate number of
arguments and pass them on to functions or macros which also take an indetermi-
nate number of arguments. This situation commonly arises when implementing
implicit blocks. Common Lisp has several operators for grouping code into blocks,
including block, tagbody, and progn. These operators rarely appear directly in
source code; they are more often implicit—that is, hidden by macros.

An implicit block occurs in any built-in macro which can have a body of
expressions. Both let and cond provide implicit progn, for example. The
simplest built-in macro to do so is probably when:

(when (eligible obj)
(do-this)
(do-that)
obj)

If (eligible obj) returns true, the remaining expressions will be evaluated, and
the when expression as a whole will return the value of the last. As an example of
the use of comma-at, here is one possible definition for when:

(defmacro our-when (test &body body)
‘(if ,test

(progn
,@body)))

This definition uses an &body parameter (identical to &rest except for its effect
on pretty-printing) to take in an arbitrary number of arguments, and a comma-at
to splice them into a progn expression. In the macroexpansion of the call above,
the three expressions in the body will appear within a single progn:



88 MACROS

(if (eligible obj)
(progn (do-this)

(do-that)
obj))

Most macros for iteration splice their arguments in a similar way.
The effect of comma-at can be achieved without using backquote. The ex-

pression ‘(a ,@b c) is equal to (cons ’a (append b (list ’c))), for ex-
ample. Comma-at exists only to make such expression-generating expressions
more readable.

Macro definitions (usually) generate lists. Although macro expansions could
be built with the function list, backquote list-templates make the task much
easier. A macro defined with defmacro and backquote will superficially resemble
a function defined with defun. So long as you are not misled by the similarity,
backquote makes macro definitions both easier to write and easier to read.

Backquote is so often used in macro definitions that people sometimes think
of backquote as part of defmacro. The last thing to remember about backquote is
that it has a life of its own, separate from its role in macros. You can use backquote
anywhere sequences need to be built:

(defun greet (name)
‘(hello ,name))

7.3 Defining Simple Macros

In programming, the best way to learn is often to begin experimenting as soon
as possible. A full theoretical understanding can come later. Accordingly, this
section presents a way to start writing macros immediately. It works only for a
narrow range of cases, but where applicable it can be applied quite mechanically.
(If you’ve written macros before, you may want to skip this section.)

As an example, we consider how to write a variant of the the built-in Common
Lisp function member. By default member uses eql to test for equality. If you
want to test for membership using eq, you have to say so explicitly:

(member x choices :test #’eq)

If we did this a lot, we might want to write a variant of memberwhich always used
eq. Some earlier dialects of Lisp had such a function, called memq:

(memq x choices)

Ordinarily one would definememq as an inline function, but for the sake of example
we will reincarnate it as a macro.



7.3 DEFINING SIMPLE MACROS 89

call: (memq x choices)

expansion: (member x choices :test #’eq)

Figure 7.2: Diagram used in writing memq.

The method: Begin with a typical call to the macro you want to define. Write
it down on a piece of paper, and below it write down the expression into which it
ought to expand. Figure 7.2 shows two such expressions. From the macro call,
construct the parameter list for your macro, making up some parameter name for
each of the arguments. In this case there are two arguments, so we’ll have two
parameters, and call them obj and lst:

(defmacro memq (obj lst)

Now go back to the two expressions you wrote down. For each argument in the
macro call, draw a line connecting it with the place it appears in the expansion
below. In Figure 7.2 there are two parallel lines. To write the body of the macro,
turn your attention to the expansion. Start the body with a backquote. Now, begin
reading the expansion expression by expression. Wherever you find a parenthesis
that isn’t part of an argument in the macro call, put one in the macro definition.
So following the backquote will be a left parenthesis. For each expression in the
expansion

1. If there is no line connecting it with the macro call, then write down the
expression itself.

2. If there is a connection to one of the arguments in the macro call, write
down the symbol which occurs in the corresponding position in the macro
parameter list, preceded by a comma.

There is no connection to the first element, member, so we use member itself:

(defmacro memq (obj lst)
‘(member

However, x has a line leading to the first argument in the source expression, so we
use in the macro body the first parameter, with a comma:

(defmacro memq (obj lst)
‘(member ,obj

Continuing in this way, the completed macro definition is:



90 MACROS

(while hungry
(stare-intently)
(meow)
(rub-against-legs))

(do ()
((not hungry))

(stare-intently)
(meow)
(rub-against-legs))

Figure 7.3: Diagram used in writing while.

(defmacro memq (obj lst)
‘(member ,obj ,lst :test #’eq))

So far, we can only write macros which take a fixed number of arguments.
Now suppose we want to write a macro while, which will take a test expression
and some body of code, and loop through the code as long as the test expression
returns true. Figure 7.3 contains an example of a while loop describing the
behavior of a cat.

To write such a macro, we have to modify our technique slightly. As before,
begin by writing down a sample macro call. From that, build the parameter list
of the macro, but where you want to take an indefinite number of arguments,
conclude with an &rest or &body parameter:

(defmacro while (test &body body)

Now write the desired expansion below the macro call, and as before draw lines
connecting the arguments in the macro call to their position in the expansion.
However, when you have a sequence of arguments which are going to be sucked
into a single &rest or &body parameter, treat them as a group, drawing a single
line for the whole sequence. Figure 7.3 shows the resulting diagram.

To write the body of the macro definition, proceed as before along the expan-
sion. As well as the two previous rules, we need one more:

3. If there is a connection from a series of expressions in the expansion to a
series of the arguments in the macro call, write down the corresponding
&rest or &body parameter, preceded by a comma-at.

So the resulting macro definition will be:



7.4 TESTING MACROEXPANSION 91

(defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

To build a macro which can have a body of expressions, some parameter has to
act as a funnel. Here multiple arguments in the macro call are joined together into
body, and then broken up again when body is spliced into the expansion.

The approach described in this section enables us to write the simplest
macros—those which merely shuffle their parameters. Macros can do a lot
more than that. Section 7.7 will present examples where expansions can’t be
represented as simple backquoted lists, and to generate them, macros become
programs in their own right.

7.4 Testing Macroexpansion

Having written a macro, how do we test it? A macro like memq is simple enough
that one can tell just by looking at it what it will do. When writing more compli-
cated macros, we have to be able to check that they are being expanded correctly.

Figure 7.4 shows a macro definition and two ways of looking at its expansion.
The built-in function macroexpand takes an expression and returns its macroex-
pansion. Sending a macro call to macroexpand shows how the macro call will
finally be expanded before being evaluated, but a complete expansion is not al-
ways what you want in order to test a macro. When the macro in question relies
on other macros, they too will be expanded, so a complete macroexpansion can
sometimes be difficult to read.

From the first expression shown in Figure 7.4, it’s hard to tell whether or not
while is expanding as intended, because the built-in do macro gets expanded, as
well as the prog macro into which it expands. What we need is a way of seeing
the result after only one step of expansion. This is the purpose of the built-in
function macroexpand-1, shown in the second example; macroexpand-1 stops
after just one step, even if the expansion is still a macro call.

When we want to look at the expansion of a macro call, it will be a nuisance
always to have to type

(pprint (macroexpand-1 ’(or x y)))

Figure 7.5 defines a new macro which allows us to say instead:

(mac (or x y))

Typically you debug functions by calling them, and macros by expanding
them. But since a macro call involves two layers of computation, there are two



92 MACROS

> (defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

WHILE

> (pprint (macroexpand ’(while (able) (laugh))))

(BLOCK NIL
(LET NIL
(TAGBODY
#:G61
(IF (NOT (ABLE)) (RETURN NIL))
(LAUGH)
(GO #:G61))))

T
> (pprint (macroexpand-1 ’(while (able) (laugh))))

(DO NIL
((NOT (ABLE)))

(LAUGH))
T

Figure 7.4: A macro and two depths of expansion.

(defmacro mac (expr)
‘(pprint (macroexpand-1 ’,expr)))

Figure 7.5: A macro for testing macroexpansion.

points where things can go wrong. If a macro is misbehaving, most of the time
you will be able to tell what’s wrong just by looking at the expansion. Sometimes,
though, the expansion will look fine and you’ll want to evaluate it to see where
the problems arise. If the expansion contains free variables, you may want to set
some variables first. In some systems, you will be able to copy the expansion and
paste it into the toplevel, or select it and choose eval from a menu. In the worst
case you can set a variable to the list returned by macroexpand-1, then call eval
on it:



7.5 DESTRUCTURING IN PARAMETER LISTS 93

> (setq exp (macroexpand-1 ’(memq ’a ’(a b c))))
(MEMBER (QUOTE A) (QUOTE (A B C)) :TEST (FUNCTION EQ))
> (eval exp)
(A B C)

Finally, macroexpansion is more than an aid in debugging, it’s also a way of
learning how to write macros. Common Lisp has over a hundred macros built-in,
some of them quite complex. By looking at the expansions of these macros you
will often be able to see how they were written.

7.5 Destructuring in Parameter Lists

Destructuring is a generalization of the sort of assignment3 done by function calls.
If you define a function of several arguments

(defun foo (x y z)
(+ x y z))

then when the function is called

(foo 1 2 3)

the parameters of the function are assigned arguments in the call according to their
position: x to 1, y to 2, and z to 3. Destructuring describes the situation where
this sort of positional assignment is done for arbitrary list structures, as well as
flat lists like (x y z).

The Common Lisp destructuring-bind macro (new in CLTL2) takes a
pattern, an argument evaluating to a list, and a body of expressions, and evaluates
the expressions with the parameters in the pattern bound to the corresponding
elements of the list:

> (destructuring-bind (x (y) . z) ’(a (b) c d)
(list x y z))

(A B (C D))

This new operator and others like it form the subject of Chapter 18.
Destructuring is also possible in macro parameter lists. The Common Lisp

defmacro allows parameter lists to be arbitrary list structures. When a macro
call is expanded, components of the call will be assigned to the parameters as if
by destructuring-bind. The built-in dolist macro takes advantage of such
parameter list destructuring. In a call like:

3Destructuring is usually seen in operators which create bindings, rather than do assignments.
However, conceptually destructuring is a way of assigning values, and would work just as well for
existing variables as for new ones. That is, there is nothing to stop you from writing a destructuring
setq.



94 MACROS

(dolist (x ’(a b c))
(print x))

the expansion function must pluck x and ’(a b c) from within the list given as
the first argument. That can be done implicitly by giving dolist the appropriate
parameter list:4

(defmacro our-dolist ((var list &optional result) &body body)
‘(progn

(mapc #’(lambda (,var) ,@body)
,list)

(let ((,var nil))
,result)))

In Common Lisp, macros like dolist usually enclose within a list the arguments
not part of the body. Because it takes an optional result argument, dolist
must enclose its first arguments in a distinct list anyway. But even if the extra
list structure were not necessary, it would make calls to dolist easier to read.
Suppose we want to define a macro when-bind, like when except that it binds
some variable to the value returned by the test expression. This macro may be
best implemented with a nested parameter list:

(defmacro when-bind ((var expr) &body body)
‘(let ((,var ,expr))

(when ,var
,@body)))

and called as follows:

(when-bind (input (get-user-input))
(process input))

instead of:

(let ((input (get-user-input)))
(when input
(process input)))

Used sparingly, parameter list destructuring can result in clearer code. At a
minimum, it can be used in macros like when-bind and dolist, which take two
or more arguments followed by a body of expressions.

4This version is written in this strange way to avoid using gensyms, which are not introduced till
later.



7.6 A MODEL OF MACROS 95

(defmacro our-expander (name) ‘(get ,name ’expander))

(defmacro our-defmacro (name parms &body body)
(let ((g (gensym)))
‘(progn

(setf (our-expander ’,name)
#’(lambda (,g)

(block ,name
(destructuring-bind ,parms (cdr ,g)
,@body))))

’,name)))

(defun our-macroexpand-1 (expr)
(if (and (consp expr) (our-expander (car expr)))

(funcall (our-expander (car expr)) expr)
expr))

Figure 7.6: A sketch of defmacro.

7.6 A Model of Macros

A formal description of what macros do would be long and confusing. Experienced
programmers do not carry such a description in their heads anyway. It’s more
convenient to remember what defmacro does by imagining how it would be
defined.

There is a long tradition of such explanations in Lisp. The Lisp 1.5 Pro-
grammer’s Manual, first published in 1962, gives for reference a definition of ◦
eval written in Lisp. Since defmacro is itself a macro, we can give it the same
treatment, as in Figure 7.6. This definition uses several techniques which haven’t
been covered yet, so some readers may want to refer to it later.

The definition in Figure 7.6 gives a fairly accurate impression of what macros
do, but like any sketch it is incomplete. It wouldn’t handle the &whole keyword
properly. And what defmacro really stores as the macro-function of its first
argument is a function of two arguments: the macro call, and the lexical envi-
ronment in which it occurs. However, these features are used only by the most
esoteric macros. If you worked on the assumption that macros were implemented
as in Figure 7.6, you would hardly ever go wrong. Every macro defined in this
book would work, for example.

The definition in Figure 7.6 yields an expansion function which is a sharp-
quoted lambda-expression. That should make it a closure: any free symbols in the



96 MACROS

macro definition should refer to variables in the environment where the defmacro
occurred. So it should be possible to say this:

(let ((op ’setq))
(defmacro our-setq (var val)
(list op var val)))

As of CLTL2, it is. But in CLTL1, macro expanders were defined in the null lexical
environment,5 so in some old implementations this definition of our-setq will
not work.

7.7 Macros as Programs

A macro definition need not be just a backquoted list. A macro is a function which
transforms one sort of expression into another. This function can call list to
generate its result, but can just as well invoke a whole subprogram consisting of
hundreds of lines of code.

Section 7.3 gave an easy way of writing macros. Using this technique we can
write macros whose expansions contain the same subexpressions as appear in the
macro call. Unfortunately, only the simplest macros meet this condition. As a
more complicated example, consider the built-in macro do. It isn’t possible to
write do as a macro which simply shuffles its parameters. The expansion has to
build complex expressions which never appear in the macro call.

The more general approach to writing macros is to think about the sort of
expression you want to be able to use, what you want it to expand into, and then
write the program that will transform the first form into the second. Try expanding
an example by hand, then look at what happens when one form is transformed into
another. By working from examples you can get an idea of what will be required
of your proposed macro.

Figure 7.7 shows an instance of do, and the expression into which it should
expand. Doing expansions by hand is a good way to clarify your ideas about how
a macro should work. For example, it may not be obvious until one tries writing
the expansion that the local variables will have to be updated using psetq.

The built-in macro psetq (named for “parallel setq”) behaves like setq,
except that all its (even-numbered) arguments will be evaluated before any of the
assignments are made. If an ordinary setq has more than two arguments, then
the new value of the first argument is visible during the evaluation of the fourth:

5For an example of macro where this distinction matters, see the note on page 393.



7.7 MACROS AS PROGRAMS 97

(do ((w 3)
(x 1 (1+ x))
(y 2 (1+ y))
(z))

((> x 10) (princ z) y)
(princ x)
(princ y))

should expand into something like

(prog ((w 3) (x 1) (y 2) (z nil))
foo
(if (> x 10)

(return (progn (princ z) y)))
(princ x)
(princ y)
(psetq x (1+ x) y (1+ y))
(go foo))

Figure 7.7: Desired expansion of do.

> (let ((a 1))
(setq a 2 b a)
(list a b))

(2 2)

Here, because a is set first, b gets its new value, 2. A psetq is supposed to behave
as if its arguments were assigned in parallel:

> (let ((a 1))
(psetq a 2 b a)
(list a b))

(2 1)

So here b gets the old value of a. The psetq macro is provided especially to
support macros like do, which need to evaluate some of their arguments in parallel.
(Had we used setq, we would have been defining do* instead.)

On looking at the expansion, it is also clear that we can’t really use foo as
the loop label. What if foo is also used as a loop label within the body of the
do? Chapter 9 will deal with this problem in detail; for now, suffice it to say that
instead of using foo, the macroexpansion must use a special anonymous symbol
returned by the function gensym.



98 MACROS

(defmacro our-do (bindforms (test &rest result) &body body)
(let ((label (gensym)))
‘(prog ,(make-initforms bindforms)

,label
(if ,test

(return (progn ,@result)))
,@body
(psetq ,@(make-stepforms bindforms))
(go ,label))))

(defun make-initforms (bindforms)
(mapcar #’(lambda (b)

(if (consp b)
(list (car b) (cadr b))
(list b nil)))

bindforms))

(defun make-stepforms (bindforms)
(mapcan #’(lambda (b)

(if (and (consp b) (third b))
(list (car b) (third b))
nil))

bindforms))

Figure 7.8: Implementing do.

In order to write do, we consider what it would take to transform the first
expression in Figure 7.7 into the second. To perform such a transformation,
we need to do more than get the macro parameters into the right positions in
some backquoted list. The initial prog has to be followed by a list of symbols
and their initial bindings, which must be extracted from the second argument
passed to the do. The function make-initforms in Figure 7.8 will return such
a list. We also have to build a list of arguments for the psetq, but this case is
more complicated because not all the symbols should be updated. In Figure 7.8,
make-stepforms returns arguments for the psetq. With these two functions,
the rest of the definition becomes fairly straightforward.

The code in Figure 7.8 isn’t exactly the way do would be written in a
real implementation. To emphasize the computation done during expansion,
make-initforms and make-stepforms have been broken out as separate func-
tions. In the future, such code will usually be left within the defmacro expression.



7.8 MACRO STYLE 99

With the definition of this macro, we begin to see what macros can do. A
macro has full access to Lisp to build an expansion. The code used to generate
the expansion may be a program in its own right.

7.8 Macro Style

Good style means something different for macros. Style matters when code is
either read by people or evaluated by Lisp. With macros, both of these activities
take place under slightly unusual circumstances.

There are two different kinds of code associated with a macro definition: ex-
pander code, the code used by the macro to generate its expansion, and expansion
code, which appears in the expansion itself. The principles of style are different
for each. For programs in general, to have good style is to be clear and efficient.
These principles are bent in opposite directions by the two types of macro code:
expander code can favor clarity over efficiency, and expansion code can favor
efficiency over clarity.

It’s in compiled code that efficiency counts most, and in compiled code the
macro calls have already been expanded. If the expander code was efficient, it
made compilation go slightly faster, but it won’t make any difference in how well
the program runs. Since the expansion of macro calls tends to be only a small part
of the work done by a compiler, macros which expand efficiently can’t usually
make much of a difference even in the compilation speed. So most of the time
you can safely write expander code the way you would write a quick, first version
of a program. If the expander code does unnecessary work or conses a lot, so
what? Your time is better spent improving other parts of the program. Certainly
if there’s a choice between clarity and speed in expander code, clarity should
prevail. Macro definitions are generally harder to read than function definitions,
because they contain a mix of expressions evaluated at two different times. If this
confusion can be reduced at the expense of efficiency in the expander code, it’s a
bargain.

For example, suppose that we wanted to define a version of and as a macro.
Since (and a b c) is equivalent to (if a (if b c)), we can write and in
terms of if as in the first definition in Figure 7.9. According to the standards by
which we judge ordinary code, our-and is badly written. The expander code is
recursive, and on each recursion finds the length of successive cdrs of the same
list. If this code were going to be evaluated at runtime, it would be better to define
this macro as in our-andb, which generates the same expansion with no wasted
effort. However, as a macro definition our-and is just as good, if not better. It
may be inefficient in calling length on each recursion, but its organization shows
more clearly the way in which the expansion depends on the number of conjuncts.



100 MACROS

(defmacro our-and (&rest args)
(case (length args)
(0 t)
(1 (car args))
(t ‘(if ,(car args)

(our-and ,@(cdr args))))))

(defmacro our-andb (&rest args)
(if (null args)

t
(labels ((expander (rest)

(if (cdr rest)
‘(if ,(car rest)

,(expander (cdr rest)))
(car rest))))

(expander args))))

Figure 7.9: Two macros equivalent to and.

As always, there are exceptions. In Lisp, the distinction between compile-
time and runtime is an artificial one, so any rule which depends upon it is likewise
artificial. In some programs, compile-time is runtime. If you’re writing a program
whose main purpose is transformation and which uses macros to do it, then
everything changes: the expander code becomes your program, and the expansion
its output. Of course under such circumstances expander code should be written
with efficiency in mind. However, it’s safe to say that most expander code (a) only
affects the speed of compilation, and (b) doesn’t affect it very much—meaning
that clarity should nearly always come first.

With expansion code, it’s just the opposite. Clarity matters less for macro
expansions because they are rarely looked at, especially by other people. The
forbidden goto is not entirely forbidden in expansions, and the disparaged setq
not quite so disparaged.

Proponents of structured programming disliked goto for what it did to source
code. It was not machine language jump instructions that they considered
harmful—so long as they were hidden by more abstract constructs in source
code. Gotos are condemned in Lisp precisely because it’s so easy to hide them:
you can use do instead, and if you didn’t have do, you could write it. Of course,
if we’re going to build new abstractions on top of goto, the goto is going to have
to exist somewhere. Thus it is not necessarily bad style to use go in the definition
of a new macro, if it can’t be written in terms of some existing macro.



7.9 DEPENDENCE ON MACROS 101

Similarly, setq is frowned upon because it makes it hard to see where a given
variable gets its value. However, a macroexpansion is not going to be read by
many people, so there is usually little harm in using setq on variables created
within the macroexpansion. If you look at expansions of some of the built-in
macros, you’ll see quite a lot of setqs.

Several circumstances can make clarity more important in expansion code. If
you’re writing a complicated macro, you may end up reading the expansions after
all, at least while you’re debugging it. Also, in simple macros, only a backquote
separates expander code from expansion code, so if such macros generate ugly
expansions, the ugliness will be all too visible in your source code. However,
even when the clarity of expansion code becomes an issue, efficiency should still
predominate. Efficiency is important in most runtime code. Two things make it
especially so for macro expansions: their ubiquity and their invisibility.

Macros are often used to implement general-purpose utilities, which are then
called everywhere in a program. Something used so often can’t afford to be
inefficient. What looks like a harmless little macro could, after the expansion
of all the calls to it, amount to a significant proportion of your program. Such a
macro should receive more attention than its length would seem to demand. Avoid
consing especially. A utility which conses unnecessarily can ruin the performance
of an otherwise efficient program.

The other reason to look to the efficiency of expansion code is its very invis-
ibility. If a function is badly implemented, it will proclaim this fact to you every
time you look at its definition. Not so with macros. From a macro definition,
inefficiency in the expansion code may not be evident, which is all the more reason
to go looking for it.

7.9 Dependence on Macros

If you redefine a function, other functions which call it will automatically get the
new version.6 The same doesn’t always hold for macros. A macro call which
occurs in a function definition gets replaced by its expansion when the function
is compiled. What if we redefine the macro after the calling function has been
compiled? Since no trace of the original macro call remains, the expansion within
the function can’t be updated. The behavior of the function will continue to reflect
the old macro definition:

> (defmacro mac (x) ‘(1+ ,x))
MAC

6Except functions compiled inline, which impose the same restrictions on redefinition as macros.



102 MACROS

> (setq fn (compile nil ’(lambda (y) (mac y))))
#<Compiled-Function BF7E7E>
> (defmacro mac (x) ‘(+ ,x 100))
MAC
> (funcall fn 1)
2

Similar problems occur if code which calls some macro is compiled before
the macro itself is defined. CLTL2 says that “a macro definition must be seen
by the compiler before the first use of the macro.” Implementations vary in how
they respond to violations of this rule. Fortunately it’s easy to avoid both types
of problem. If you adhere to the following two principles, you need never worry
about stale or nonexistent macro definitions:

1. Define macros before functions (or macros) which call them.

2. When a macro is redefined, also recompile all the functions (or macros)
which call it—directly or via other macros.

It has been suggested that all the macros in a program be put in a separate file,
to make it easier to ensure that macro definitions are compiled first. That’s taking
things too far. It would be reasonable to put general-purpose macros like while
into a separate file, but general-purpose utilities ought to be separated from the
rest of a program anyway, whether they’re functions or macros.

Some macros are written just for use in one specific part of a program, and
these should be defined with the code which uses them. So long as the definition
of each macro appears before any calls to it, your programs will compile fine.
Collecting together all your macros, simply because they’re macros, would do
nothing but make your code harder to read.

7.10 Macros from Functions

This section describes how to transform functions into macros. The first step in
translating a function into a macro is to ask yourself if you really need to do it.
Couldn’t you just as well declare the function inline (p. 26)?

There are some legitimate reasons to consider how to translate functions into
macros, though. When you begin writing macros, it sometimes helps to think
as if you were writing a function—an approach that usually yields macros which
aren’t quite right, but which at least give you something to work from. Another
reason to look at the relationship between macros and functions is to see how they
differ. Finally, Lisp programmers sometimes actually want to convert functions
into macros.



7.10 MACROS FROM FUNCTIONS 103

The difficulty of translating a function into a macro depends on a number of
properties of the function. The easiest class to translate are the functions which

1. Have a body consisting of a single expression.

2. Have a parameter list consisting only of parameter names.

3. Create no new variables (except the parameters).

4. Are not recursive (nor part of a mutually recursive group).

5. Have no parameter which occurs more than once in the body.

6. Have no parameter whose value is used before that of another parameter
occurring before it in the parameter list.

7. Contain no free variables.

One function which meets these criteria is the built-in Common Lisp function
second, which returns the second element of a list. It could be defined:

(defun second (x) (cadr x))

Where a function definition meets all the conditions above, you can easily trans-
form it into an equivalent macro definition. Simply put a backquote in front of the
body and a comma in front of each symbol which occurs in the parameter list:

(defmacro second (x) ‘(cadr ,x))

Of course, the macro can’t be called under all the same conditions. It can’t be
given as the first argument to apply or funcall, and it should not be called in
environments where the functions it calls have new local bindings. For ordinary
in-line calls, though, the macro second should do the same thing as the function
second.

The technique changes slightly when the body has more than one expression,
because a macro must expand into a single expression. So if condition 1 doesn’t
hold, you have to add a progn. The function noisy-second:

(defun noisy-second (x)
(princ "Someone is taking a cadr!")
(cadr x))

could be duplicated by the following macro:

(defmacro noisy-second (x)
‘(progn

(princ "Someone is taking a cadr!")
(cadr ,x)))



104 MACROS

When the function doesn’t meet condition 2 because it has an &rest or &body
parameter, the rules are the same, except that the parameter, instead of simply
having a comma before it, must be spliced into a call to list. Thus

(defun sum (&rest args)
(apply #’+ args))

becomes

(defmacro sum (&rest args)
‘(apply #’+ (list ,@args)))

which in this case would be better rewritten:

(defmacro sum (&rest args)
‘(+ ,@args))

When condition 3 doesn’t hold—when new variables are created within the
function body—the rule about the insertion of commas must be modified. Instead
of putting commas before all symbols in the parameter list, we only put them
before those which will refer to the parameters. For example, in:

(defun foo (x y z)
(list x (let ((x y))

(list x z))))

neither of the last two instances of x will refer to the parameter x. The second
instance is not evaluated at all, and the third instance refers to a new variable
established by the let. So only the first instance will get a comma:

(defmacro foo (x y z)
‘(list ,x (let ((x ,y))

(list x ,z))))

Functions can sometimes be transformed into macros when conditions 4, 5 and
6 don’t hold. However, these topics are treated separately in later chapters. The
issue of recursion in macros is covered in Section 10.4, and the dangers of multiple
and misordered evaluation in Sections 10.1 and 10.2, respectively.

As for condition 7, it is possible to simulate closures with macros, using a
technique similar to the error described on page 37. But seeing as this is a low
hack, not consonant with the genteel tone of this book, we shall not go into details.



7.11 SYMBOL MACROS 105

7.11 Symbol Macros

CLTL2 introduced a new kind of macro into Common Lisp, the symbol-macro.
While a normal macro call looks like a function call, a symbol-macro “call” looks
like a symbol.

Symbol-macros can only be locally defined. The symbol-macrolet special
form can, within its body, cause a lone symbol to behave like an expression:

> (symbol-macrolet ((hi (progn (print "Howdy")
1)))

(+ hi 2))
"Howdy"
3

The body of the symbol-macroletwill be evaluated as if every hi in argument
position had been replaced with (progn (print "Howdy") 1).

Conceptually, symbol-macros are like macros that don’t take any arguments.
With no arguments,macros become simply textual abbreviations. This is not to say
that symbol-macros are useless, however. They are used in Chapter 15 (page 205)
and Chapter 18 (page 237), and in the latter instance they are indispensable.




