Functions

Functions are the building-blocks of Lisp programs. They are aso the building-
blocks of Lisp. In most languages the + operator is something quite different
from user-defined functions. But Lisp has asingle model, function application, to
describe all the computation done by aprogram. The Lisp + operator isafunction,
just like the ones you can define yourself.

In fact, except for a small number of operators called special forms, the core
of Lispisacoallection of Lisp functions. What's to stop you from adding to this
collection? Nothing at all: if youthink of something you wish Lisp could do, you
can write it yourself, and your new function will be treated just like the built-in
ones.

This fact has important consequences for the programmer. 1t means that any
new function could be considered either as an addition to Lisp, or as part of a
specific application. Typically, an experienced Lisp programmer will write some
of each, adjusting the boundary between language and application until the two
fit one another perfectly. This book is about how to achieve a good fit between
language and application. Since everything we do toward this end ultimately
depends on functions, functions are the natural place to begin.

2.1 FunctionsasData

Two things make Lisp functions different. One, mentioned above, is that Lisp
itself isacollection of functions. Thismeansthat we can addto Lisp new operators
of our own. Another important thing to know about functionsisthat they are Lisp
objects.



10 FUNCTIONS

Lisp offers most of the data types one finds in other languages. We get
integers and floating-point numbers, strings, arrays, structures, and so on. But
Lisp supports one data type which may at first seem surprising: the function.
Nearly all programming languages provide some form of function or procedure.
What does it mean to say that Lisp providesthem as adatatype? It meansthat in
Lisp we can do with functions all the things we expect to do with more familiar
datatypes, likeintegers: create new onesat runtime, storetheminvariablesandin
structures, pass them as arguments to other functions, and return them as results.

The ability to create and return functions at runtime is particularly useful.
This might sound at first like a dubious sort of advantage, like the self-modifying
machine language programs one can run on some computers. But creating new
functions at runtime turns out to be aroutinely used Lisp programming technique.

2.2 Defining Functions

Most peoplefirst learn how to make functionswith defun. Thefollowing expres-
sion defines afunction called double which returnstwice its argument.

> (defun double (x) (* x 2))
DOUBLE

Having fed this to Lisp, we can call double in other functions, or from the
toplevel:

> (double 1)
2

A file of Lisp code usually consists mainly of such defuns, and so resembles a
file of procedure definitions in alanguage like C or Pascal. But something quite
different is going on. Those defuns are not just procedure definitions, they're
Lisp calls. This distinction will become clearer when we see what’s going on
underneath defun.

Functionsare objectsin their own right. What defun really doesisbuild one,
and store it under the name given as the first argument. So as well as calling
double, we can get hold of the function which implementsit. The usual way to
do soishby using the #’ (sharp-quote) operator. This operator can be understood
as mapping namesto actua function objects. By affixingit to the name of double

> #’double
#<Interpreted-Function C66ACE>

we get the actual object created by the definition above. Though its printed
representation will vary from implementation to implementation, aCommon Lisp



2.2 DEFINING FUNCTIONS 11

function is a first-class object, with all the same rights as more familiar objects
like numbers and strings. So we can pass this function as an argument, return it,
storeit in adata structure, and so on:

> (eq #’double (car (list #’double)))
T

We don’t even need defun to make functions. Like most Lisp objects, we
can refer to them literally. When we want to refer to an integer, we just use the
integer itself. To represent a string, we use a series of characters surrounded by
double-quotes. To represent afunction, weusewhat’scalled alambda-expression.
A lambda-expression is a list with three parts: the symbol 1ambda, a parameter
list, and a body of zero or more expressions. This lambda-expression refersto a
function equivalent to double:

(lambda (x) (* x 2))

It describes a function which takes one argument x, and returns 2x.

A lambda-expression can also be considered as the name of a function. If
double isaproper name, like “Michelangelo,” then (lambda (x) (x x 2))is
adefinitedescription, like* the man who painted the ceiling of the Sistine Chapel
By putting a sharp-quote before a lambda-expression, we get the corresponding
function:

> #’ (lambda (x) (*x x 2))
#<Interpreted-Function C674CE>

This function behaves exactly like double, but the two are distinct objects.
In a function call, the name of the function appears first, followed by the
arguments:

> (double 3)
6

Since lambda-expressions are also names of functions, they can also appear first
in function calls:

> ((lambda (x) (* x 2)) 3)
6

In Common Lisp, we can have afunction named double and avariable named
double at the sametime.



12 FUNCTIONS

> (setq double 2)
2
> (double double)
4

When aname occursfirst in afunction call, or is preceded by a sharp-quote, it is
taken to refer to afunction. Otherwiseit is treated as a variable name.

It is therefore said that Common Lisp has distinct name-spaces for variables
and functions. We can have a variable called foo and afunction called foo, and
they need not be identical. This situation can be confusing, and leads to a certain
amount of uglinessin code, but it is something that Common Lisp programmers
have to live with.

If necessary, Common Lisp providestwo functionswhich map symbolsto the
vaues, or functions, that they represent. The function symbol-value takes a
symbol and returns the value of the corresponding specia variable:

> (symbol-value ’double)
2

while symbol-function doesthe same for aglobally defined function:

> (symbol-function ’double)
#<Interpreted-Function C66ACE>

Note that, since functions are ordinary data objects, a variable could have a
function asits value:

> (setq x #’append)

#<Compiled-Function 46B4BE>

> (eq (symbol-value ’x) (symbol-function ’append))
T

Beneath the surface, defun is setting the symbol-function of itsfirst argu-
ment to a function constructed from the remaining arguments. The following two
expressions do approximately the same thing:

(defun double (x) (* x 2))

(setf (symbol-function ’double)
#’ (lambda (x) (x x 2)))

So defun has the same effect as procedure definition in other languages—to
associate a name with a piece of code. But the underlying mechanism is not the
same. We don’'t need defun to make functions, and functions don’t have to be



2.3 FUNCTIONAL ARGUMENTS 13

stored away as the value of some symbol. Underlying defun, which resembles
proceduredefinitionin any other language, isamore general mechanism: building
a function and associating it with a certain name are two separate operations.
When we don’t need the full generality of Lisp's notion of a function, defun
makes function definition as simple as in more restrictive languages.

2.3 Functional Arguments

Having functions as data objects means, among other things, that we can pass
them as argumentsto other functions. This possibility is partly responsiblefor the
importance of bottom-up programming in Lisp.

A language which allows functions as data objects must also provide some
way of calling them. In Lisp, thisfunction is apply. Generaly, we call apply
with two arguments: afunction, and alist of argumentsfor it. The following four
expressions all have the same effect:

+12)
(apply #°+ ’(1 2))
(apply (symbol-function ’+) (1 2))

(apply #’(lambda (x y) (+ x y)) *(1 2))

In Common Lisp, apply can take any number of arguments, and the function
given first will be applied to the list made by consing the rest of the arguments
onto the list given last. So the expression

(apply #°+ 1 ’(2))

is equivalent to the preceding four. If it isinconvenient to give the arguments as
alist, we can use funcall, which differs from apply only in this respect. This
expression

(funcall #°+ 1 2)

has the same effect as those above.

Many built-in Common Lisp functionstake functional arguments. Among the
most frequently used are the mapping functions. For example, mapcar takes two
or more arguments, a function and one or more lists (one for each parameter of
the function), and applies the function successively to elements of each list:



14 FUNCTIONS

> (mapcar #’(lambda (x) (+ x 10))

’(1 2 3))
(11 12 13)
> (mapcar #’+

’(1 2 3)

>(10 100 1000))
(11 102 1003)

Lisp programs freguently want to do something to each element of alist and get
back alist of results. The first example aboveillustrates the conventional way to
do this: make a function which does what you want done, and mapcar it over the
list.

Already we see how convenient it is to be able to treat functions as data. In
many languages, even if we could pass afunction as an argument to something like
mapcar, it would still haveto be afunction defined in some sourcefile beforehand.
If just one piece of code wanted to add 10 to each element of alist, we would have
to define a function, called plus_ten or some such, just for this one use. With
lambda-expressions, we can refer to functions directly.

One of the big differences between Common Lisp and the dialects which
preceded it are the large number of built-in functions that take functional argu-
ments. Two of the most commonly used, after the ubiquitous mapcar, are sort
and remove-if. Theformer is a general-purpose sorting function. It takes alist
and a predicate, and returns a list sorted by passing each pair of elements to the
predicate.

> (sort (1 42567 3) #'<)
(1234567)

To remember how sort works, it helpsto remember that if you sort alist with no
duplicates by <, and then apply < to theresulting list, it will return true.

If remove-if weren'tincluded in Common Lisp, it might be the first utility
you would write. It takes afunction and alist, and returns all the elements of the
list for which the function returns false.

> (remove-if #’evenp (1 2 3 45 6 7))
(1357

As an example of a function which takes functional arguments, here is a
definition of alimited version of remove-if:



2.4 FUNCTIONS AS PROPERTIES 15

(defun our-remove-if (fn 1st)
(if (null 1st)
nil
(if (funcall fn (car 1st))
(our-remove-if fn (cdr 1st))
(cons (car 1lst) (our-remove-if fn (cdr 1st))))))

Note that within this definition £n is not sharp-quoted. Since functions are data
objects, avariablecan haveafunction asitsregular value. That’swhat’shappening
here. Sharp-quoteisonly for referring to thefunction named by asymbol—usually
one globally defined as such with defun.

As Chapter 4 will show, writing new utilities which take functional arguments
is an important element of bottom-up programming. Common Lisp has so many
utilities built-in that the one you need may exist already. But whether you use
built-ins like sort, or write your own utilities, the principleis the same. Instead
of wiring in functionality, pass a functional argument.

2.4 FunctionsasProperties

Thefact that functionsare Lisp objectsalso allows usto write programswhich can
be extended to deal with new cases onthefly. Supposewewant towriteafunction
which takes a type of animal and behaves appropriately. In most languages, the
way to do thiswould bewith a case statement, and we can do it thisway in Lisp
aswell:

(defun behave (animal)
(case animal

(dog (wag-tail)
(bark))

(rat (scurry)
(squeak))

(cat (rub-legs)
(scratch-carpet))))

What if we want to add anew type of animal? If we were planning to add new
animals, it would have been better to define behave asfollows;

(defun behave (animal)
(funcall (get animal ’behavior)))

and to definethe behavior of anindividual animal asafunctionstored, for example,
on the property list of its name:



16 FUNCTIONS

(setf (get ’dog ’behavior)
#’ (lambda ()
(wag-tail)
(bark)))

Thisway, all we need do in order to add a new animal is define a new property.
No functions have to be rewritten.

The second approach, though more flexible, looks slower. It is. If speed were
critical, wewould use structuresinstead of property lists and, especially, compiled
instead of interpreted functions. (Section 2.9 explains how to make these.) With
structures and compiled functions, the more flexible type of code can approach or
exceed the speed of versions using case statements.

Thisuse of functionscorrespondsto the concept of amethod in object-oriented
programming. Generally speaking, a method is a function which is a property of
an object, and that's just what we have. If we add inheritance to this model, we'll
have all the elements of object-oriented programming. Chapter 25 will show that
this can be done with surprisingly little code.

One of the big selling points of object-oriented programming is that it makes
programs extensible. This prospect excites less wonder in the Lisp world, where
extensibility has always been taken for granted. If the kind of extensibility we
need does not depend too much on inheritance, then plain Lisp may already be
sufficient.

25 Scope

Common Lispisalexically scoped Lisp. Schemeisthe oldest dialect with lexical
scope; before Scheme, dynamic scope was considered one of the defining features
of Lisp.

The difference between lexical and dynamic scope comes down to how an
implementation deals with free variables. A symbol is bound in an expression
if it has been established as a variable, either by appearing as a parameter, or by
variable-binding operators like 1et and do. Symbols which are not bound are
said to be free. In this example, scope comesinto play:

(et ((y 7))
(defun scope-test (x)
(list x y)))

Withinthedefun expression,x ishound andy isfree. Freevariablesareinteresting
becauseit’s not obviouswhat their values should be. There'sno uncertainty about
the value of abound variable—when scope-test iscalled, the value of x should



2.6 CLOSURES 17

be whatever is passed as the argument. But what should be the value of y? This
is the question answered by the dialect’s scope rules.

In a dynamically scoped Lisp, to find the value of a free variable when exe-
cuting scope-test, we look back through the chain of functions that called it.
When we find an environment where y was bound, that binding of y will be the
oneused in scope-test. If wefind none, wetake the global value of y. Thus, in
adynamically scoped Lisp, y would havethevalueit had in the calling expression:

> (let ((y 5))
(scope-test 3))
(3 5)

With dynamic scope, it means nothing that y was bound to 7 when scope-test
was defined. All that mattersis that y had a value of 5 when scope-test was
called.

Inalexically scoped Lisp, instead of looking back through the chain of calling
functions, we look back through the containing environments at the time the
function was defined. In alexically scoped Lisp, our example would catch the
binding of y where scope-test was defined. So thisis what would happen in
Common Lisp:

> (let ((y 5))
(scope-test 3))
37

Here the binding of y to 5 at the time of the call has no effect on the returned
value.

Thoughyou can still get dynamic scopeby declaring avariableto bespecial,
lexical scopeisthe default in Common Lisp. On the whole, the Lisp community
seems to view the passing of dynamic scope with little regret. For one thing, it
used to lead to horribly elusive bugs. But lexical scope is more than a way of
avoiding bugs. As the next section will show, it also makes possible some new
programming techniques.

2.6 Closures

Because Common Lisp islexically scoped, when we define afunction containing
free variables, the system must save copies of the bindings of those variables at
the time the function was defined. Such a combination of a function and a set
of variable bindingsis called a closure. Closures turn out to be useful in awide
variety of applications.



18 FUNCTIONS

Closures are so pervasive in Common Lisp programs that it's possible to use
them without even knowing it. Every time you give mapcar a sharp-quoted
lambda-expression containing free variables, you're using closures. For example,
suppose we want to write a function which takes a list of numbers and adds a
certain amount to each one. Thefunction List+

(defun list+ (1st n)
(mapcar #’(lambda (x) (+ x n))
1st))

will do what we want:

> (list+ (1 2 3) 10)
(11 12 13)

If we look closely at the function which is passed to mapcar within 1ist+, it's
actually a closure. The instance of n is free, and its binding comes from the
surrounding environment. Under lexical scope, every such use of a mapping
function causes the creation of aclosure.*

Closures play a more conspicuous role in a style of programming promoted
by Abelson and Sussman'’s classic Sructure and Interpretation of Computer Pro-
grams. Closures are functionswith local state. The simplest way to use this state
isinasituation like the following:

(let ((counter 0))
(defun new-id () (incf counter))
(defun reset-id () (setq counter 0)))

These two functions share a variable which serves as a counter. The first one
returns successive values of the counter, and the second resets the counter to 0.
The same thing could be done by making the counter a global variable, but this
way it is protected from unintended references.

It's also useful to be ableto return functionswith local state. For example, the
functionmake-adder

(defun make-adder (n)
#’ (lambda (x) (+ x n)))

takes a number, and returns a closure which, when called, adds that number to its
argument. We can make as many instances of adders as we want:

1Under dynamic scope the same idiom will work for a different reason—so long as neither of
mapcar’s parameter is called x.



2.6 CLOSURES 19

> (setq add2 (make-adder 2)
add10 (make-adder 10))

#<Interpreted-Function BF162E>

> (funcall add2 5)

7

> (funcall add10 3)

13

In the closures returned by make-adder, the internal state is fixed, but it's also
possible to make closures which can be asked to change their state.

(defun make-adderb (n)
#’ (lambda (x &optional change)
(if change
(setq n x)
(+ x n))))

This new version of make-adder returns closures which, when called with one
argument, behave just like the old ones.

> (setq addx (make-adderb 1))
#<Interpreted-Function BF1C66>
> (funcall addx 3)

4

However, when the new type of adder is called with a non-nil second argument,
itsinternal copy of n will be reset to the value passed as the first argument:

> (funcall addx 100 t)
100

> (funcall addx 3)

103

It's even possible to return a group of closures which share the same data
objects. Figure 2.1 contains afunction which creates primitive databases. It takes
an assoc-list (db), and returnsalist of three closures which query, add, and delete
entries, respectively.

Each call to make-dbms makes anew database—anew set of functions closed
over their own shared copy of an assoc-list.

> (setq cities (make-dbms ’((boston . us) (paris . france))))
(#<Interpreted-Function 8022E7>
#<Interpreted-Function 802317>
#<Interpreted-Function 802347>)



20 FUNCTIONS

(defun make-dbms (db)
(list

#’ (lambda (key)
(cdr (assoc key db)))

#’ (lambda (key val)
(push (cons key val) db)
key)

#’ (lambda (key)
(setf db (delete key db :key #’car))
key)))

Figure 2.1: Three closuresshare alist.

The actual assoc-list within the database is invisible from the outside world—we
can't even tell that it's an assoc-list—nbut it can be reached through the functions
which are componentsof cities:

> (funcall (car cities) ’boston)

Us

> (funcall (second cities) ’london ’england)
LONDON

> (funcall (car cities) ’london)

ENGLAND

Calingthe car of alistisabit ugly. Inrea programs, the access functions might
instead be entries in a structure. Using them could also be cleaner—databases
could be reached indirectly viafunctionslike:

(defun lookup (key db)
(funcall (car db) key))

However, the basic behavior of closuresisindependent of such refinements.

Inreal programs, the closuresand datastructureswoul d a so be more elaborate
thanthosewe seeinmake-adder or make-dbms. Thesinglesharedvariablecould
be any number of variables, each bound to any sort of data structure.

Closuresare one of the distinct, tangible benefitsof Lisp. SomeLisp programs
could, with effort, be trandated into less powerful languages. But just try to
translate a program which uses closures as above, and it will become evident how
much work this abstraction is saving us. Later chapterswill deal with closuresin
more detail. Chapter 5 shows how to use them to build compound functions, and
Chapter 6 looks at their use as a substitute for traditional data structures.



2.7 LOCAL FUNCTIONS 21

2.7 Local Functions

When we define functions with lambda-expressions, we face a restriction which
doesn’t arisewith defun: afunction defined in alambda-expression doesn’t have
anameand thereforehas noway of referringtoitself. Thismeansthat in Common
Lisp we can't use 1ambda to define arecursive function.

If wewant to apply some functionto all the elements of alist, we use the most
familiar of Lisp idioms:

> (mapcar #’(lambda (x) (+ 2 x))
(257 3))
(4795)

What about cases where we want to give arecursive function as the first argument
tomapcar? If the function has been defined with defun, we can simply refer to
it by name:

> (mapcar #’copy-tree ’((a b) (c d e)))
((AB) (CDE))

But now suppose that the function has to be a closure, taking some bindings from
the environment in which the mapcar occurs. In our examplelist+,

(defun list+ (1st n)
(mapcar #’(lambda (x) (+ x n))
1st))

thefirstargumenttomapcar,#’ (lambda (x) (+ x n)),mustbedefinedwithin
list+ because it needs to catch the binding of n. So far so good, but what if we
want to givemapcar afunction which both needslocal bindingsand is recursive?
We can’t use afunction defined el sewhere with defun, because we need bindings
from the local environment. And we can’t use lambda to define a recursive
function, because the function will have no way of referring to itself.

Common Lisp gives us labels as a way out of this dilemma. With one
important reservation, 1abels could be described as a sort of 1et for functions.
Each of the binding specificationsin a labels expression should have the form

({name) (parameters) . (body))
Within the 1abels expression, (name) will refer to afunction equivalent to:
#’ (lambda (parameters) . (body))

So for example:



22 FUNCTIONS

> (labels ((inc (x) (1+ x)))
(inc 3))
4

However, there is an important difference between let and labels. Inalet
expression, the value of one variable can’t depend on another variable made by
the same 1let—that is, you can’t say

(let ((x 10) (y x))
y)

and expect thevalue of the new y toreflect that of thenew x. In contrast, the body of
afunction f definedinalabels expression may refer to any other function defined
there, including f itself, which makes recursive function definitions possible.

Using 1abels we can write afunction analogous to 1ist+, but in which the
first argument to mapcar is arecursive function:

(defun count-instances (obj lsts)
(labels ((instances-in (1st)
(if (comsp 1lst)
(+ (if (eq (car 1st) obj) 1 0)
(instances-in (cdr 1st)))
0)))

(mapcar #’instances-in 1lsts)))

This function takes an object and a list, and returns a list of the number of
occurrences of the object in each element:

> (count-instances ’a ((abc) (darpa) (dar) (aa)))
1212

2.8 Tail-Recursion

A recursive function is one that calls itself. Such a call is tail-recursive if no
work remains to be done in the calling function afterwards. This function is not
tail-recursive

(defun our-length (1lst)
(if (null 1st)
0
(1+ (our-length (cdr 1lst)))))

because on returning from the recursive call we have to passtheresult to 1+. The
following function is tail-recursive, though



2.8 TAIL-RECURSION 23

(defun our-find-if (fn 1st)
(if (funcall fn (car 1lst))
(car 1st)
(our-find-if fn (cdr 1st))))

because the value of the recursive call isimmediately returned.

Tail-recursion is desirable because many Common Lisp compilers can trans-
form tail-recursive functions into loops. With such a compiler, you can have the
elegance of recursion in your source code without the overhead of function calls
at runtime. Thegainin speed is usually great enough that programmers go out of
their way to make functions tail-recursive.

A function which isn’t tail-recursive can often be transformed into one that is
by embeddinginit alocal functionwhich usesan accumulator. In thiscontext, an
accumulator is a parameter representing the value computed so far. For example,
our-length could be transformed into

(defun our-length (1lst)
(labels ((rec (1st acc)
(if (null 1st)
acc
(rec (cdr 1st) (1+ acc)))))
(rec 1st 0)))

where the number of list elements seen so far is contained in a second parameter,
acc. When the recursion reaches the end of the list, the value of acc will be
the total length, which can just be returned. By accumulating the value as we go
down the calling tree instead of constructing it on the way back up, we can make
rec tail-recursive.

Many Common Lisp compilers can do tail-recursion optimization, but not all
of them do it by default. So after writing your functionsto be tail-recursive, you
may also want to put

(proclaim ’ (optimize speed))

at thetop of thefile, to ensurethat the compiler can take advantage of your efforts. 2

Given tail-recursion and type declarations, existing Common Lisp compilers
can generate code that runs as fast as, or faster than, C. Richard Gabriel givesas o
an example the following function, which returns the sum of the integers from 1
ton:

2The declaration (optimize speed) ought to be an abbreviation for (optimize (speed 3)).
However, one Common Lisp implementation does tail-recursion optimization with the former, but not
the latter.



24 FUNCTIONS

(defun triangle (n)
(labels ((tri (c n)

(declare (type fixnum n c))

(if (zerop n)
c
(tri (the fixnum (+ n c))

(the fixnum (- n 1))))))
(tri 0 n)))

Thisis what fast Common Lisp code looks like. At first it may not seem natural
to write functions this way. It's often a good idea to begin by writing a function
in whatever way seems most natural, and then, if necessary, transformingitinto a
tail-recursive equivalent.

2.9 Compilation

Lisp functions can be compiled either individually or by thefile. If you just type
adefun expression into the toplevel,

> (defun foo (x) (1+ x))
FOO

many implementationswill create aninterpreted function. You can check whether
agiven function is compiled by feeding it to compiled-function-p:

> (compiled-function-p #’foo)
NIL

We can have foo compiled by giving its name to compile

> (compile ’foo)
FOO

which will compile the definition of foo and replace the interpreted version with
acompiled one.

> (compiled-function-p #’foo)
T

Compiled and interpreted functions are both Lisp objects, and behave the same,
except with respect to compiled-function-p. Literal functions can aso be
compiled: compile expectsits first argument to be a name, but if you givenil
as the first argument, it will compile the lambda-expression given as the second
argument.



29 COMPILATION 25

> (compile nil ’(lambda (x) (+ x 2)))
#<Compiled-Function BF55BE>

If you give both the name and function arguments, compile becomes a sort of
compiling defun:

> (progn (compile ’bar ’(lambda (x) (* x 3)))
(compiled-function-p #’bar))
T

Having compile inthelanguage meansthat aprogram could build and compile
new functionsonthefly. However, calling compile explicitly isadrastic measure,
comparable to calling eval, and should be viewed with the same suspicion. 3
When Section 2.1 said that creating new functions at runtime was a routinely
used programming technique, it referred to new closures like those made by
make-adder, not functions made by caling compile on raw lists. Calling
compile is not aroutinely used programming technique—it's an extremely rare
one. So beware of doing it unnecessarily. Unless you're implementing another
language on top of Lisp (and much of the time, even then), what you need to do
may be possible with macros.

There are two sorts of functions which you can’t give as an argument to
compile. According to cLTL2 (p. 677), you can’t compile a function “defined
interpretively in a non-null lexical environment.” That is, if at the toplevel you
define foo withinalet

> (let ((y 2))
(defun foo (x) (+ x y)))

then (compile ’foo) will not necessarily work.* You also can't call compile
on afunction which isalready compiled. In this situation, CLTL2 hints darkly that
“the consequences. . .are unspecified.”

The usua way to compile Lisp code is not to compile functions individually
with compile, but to compile whole files with compile-file. This function
takes afilename and creates a compiled version of the source file—typically with
the same base name but a different extension. When the compiled file is |oaded,
compiled-function-p shouldreturntruefor al the functionsdefinedin thefile.

Later chapterswill depend on another effect of compilation: when onefunction
occurswithin another function, and the containing function is compiled, the inner

3An explanation of why it is bad to call eval explicitly appears on page 278.

41t'sok to have this codein afile and then compile thefile. Therestriction isimposed oninterpreted
code for implementation reasons, not because there's anything wrong with defining functionsin distinct
lexical environments.



26 FUNCTIONS

function will also get compiled. CLTL2 does not seem to say explicitly that this
will happen, but in a decent implementation you can count on it.

The compiling of inner functions becomes evident in functions which return
functions. When make-adder (page 18) is compiled, it will return compiled
functions:

> (compile ’make-adder)

MAKE-ADDER

> (compiled-function-p (make-adder 2))
T

Aslater chapterswill show, thisfact is of great importancein the implementation
of embedded languages. If a new language is implemented by transformation,
and the transformation code is compiled, then it yields compiled output—and
so becomes in effect a compiler for the new language. (A simple example is
described on page 81.)

If we have a particularly small function, we may want to request that it be
compiled inline. Otherwise, the machinery of calling it could entail more effort
than the function itself. If we define a function:

(defun 50th (1st) (nth 49 1st))
and make the declaration;
(proclaim ’(inline 50th))

then areference to 50th within a compiled function should no longer require a
real function call. If we define and compile a function which calls 50th,

(defun foo (1st)
(+ (50th 1st) 1))

then when foo is compiled, the code for 50th should be compiled right into it,
just asif we had written

(defun foo (1st)
(+ (nth 49 1st) 1))

in the first place. The drawback is that if we redefine 50th, we aso have to
recompile foo, or it will still reflect the old definition. The restrictions on inline
o functions are basically the same as those on macros (see Section 7.9).



2.10 FUNCTIONS FROM LISTS 27

2.10 Functionsfrom Lists

Insomeearlier diaectsof Lisp, functionswererepresented aslists. ThisgaveLisp
programs the remarkable ability to write and execute their own Lisp programs.
In Common Lisp, functions are no longer made of lists—good implementations
compile them into native machine code. But you can still write programs that
write programs, because lists are the input to the compiler.

It cannot be overemphasized how important it is that Lisp programs can
write Lisp programs, especialy since this fact is so often overlooked. Even
experienced Lisp usersrarely realize the advantages they derive from this feature
of the language. This is why Lisp macros are so powerful, for example. Most
of the techniques described in this book depend on the ability to write programs
which manipulate Lisp expressions.





