
1

The Extensible Language

Not long ago, if you asked what Lisp was for, many people would have answered
“for artificial intelligence.” In fact, the association between Lisp and AI is just an
accident of history. Lisp was invented by John McCarthy, who also invented the
term “artificial intelligence.” His students and colleagues wrote their programs in
Lisp, and so it began to be spoken of as an AI language. This line was taken up
and repeated so often during the brief AI boom in the 1980s that it became almost
an institution.

Fortunately, word has begun to spread that AI is not what Lisp is all about.
Recent advances in hardware and software have made Lisp commercially viable:
it is now used in Gnu Emacs, the best Unix text-editor; Autocad, the industry stan-
dard desktop CAD program; and Interleaf, a leading high-end publishing program.
The way Lisp is used in these programs has nothing whatever to do with AI.

If Lisp is not the language of AI, what is it? Instead of judging Lisp by the
company it keeps, let’s look at the language itself. What can you do in Lisp that
you can’t do in other languages? One of the most distinctive qualities of Lisp is
the way it can be tailored to suit the program being written in it. Lisp itself is a
Lisp program, and Lisp programs can be expressed as lists, which are Lisp data
structures. Together, these two principles mean that any user can add operators to
Lisp which are indistinguishable from the ones that come built-in.

1.1 Design by Evolution

Because Lisp gives you the freedom to define your own operators, you can mold
it into just the language you need. If you’re writing a text-editor, you can turn

1



2 THE EXTENSIBLE LANGUAGE

Lisp into a language for writing text-editors. If you’re writing a CAD program,
you can turn Lisp into a language for writing CAD programs. And if you’re not
sure yet what kind of program you’re writing, it’s a safe bet to write it in Lisp.
Whatever kind of program yours turns out to be, Lisp will, during the writing of
it, have evolved into a language for writing that kind of program.

If you’re not sure yet what kind of program you’re writing? To some ears
that sentence has an odd ring to it. It is in jarring contrast with a certain model
of doing things wherein you (1) carefully plan what you’re going to do, and then
(2) do it. According to this model, if Lisp encourages you to start writing your
program before you’ve decided how it should work, it merely encourages sloppy
thinking.

Well, it just ain’t so. The plan-and-implement method may have been a good
way of building dams or launching invasions, but experience has not shown it to
be as good a way of writing programs. Why? Perhaps it’s because computers
are so exacting. Perhaps there is more variation between programs than there
is between dams or invasions. Or perhaps the old methods don’t work because
old concepts of redundancy have no analogue in software development: if a dam
contains 30% too much concrete, that’s a margin for error, but if a program does
30% too much work, that is an error.

It may be difficult to say why the old method fails, but that it does fail, anyone
can see. When is software delivered on time? Experienced programmers know
that no matter how carefully you plan a program, when you write it the plans will
turn out to be imperfect in some way. Sometimes the plans will be hopelessly
wrong. Yet few of the victims of the plan-and-implement method question its
basic soundness. Instead they blame human failings: if only the plans had been
made with more foresight, all this trouble could have been avoided. Since even
the very best programmers run into problems when they turn to implementation,
perhaps it’s too much to hope that people will ever have that much foresight.
Perhaps the plan-and-implement method could be replaced with another approach
which better suits our limitations.

We can approach programming in a different way, if we have the right tools.
Why do we plan before implementing? The big danger in plunging right into
a project is the possibility that we will paint ourselves into a corner. If we had
a more flexible language, could this worry be lessened? We do, and it is. The
flexibility of Lisp has spawned a whole new style of programming. In Lisp, you
can do much of your planning as you write the program.

Why wait for hindsight? As Montaigne found, nothing clarifies your ideas
like trying to write them down. Once you’re freed from the worry that you’ll paint
yourself into a corner, you can take full advantage of this possibility. The ability
to plan programs as you write them has two momentous consequences: programs
take less time to write, because when you plan and write at the same time, you



1.2 PROGRAMMING BOTTOM-UP 3

have a real program to focus your attention; and they turn out better, because the
final design is always a product of evolution. So long as you maintain a certain
discipline while searching for your program’s destiny—so long as you always
rewrite mistaken parts as soon as it becomes clear that they’re mistaken—the final
product will be a program more elegant than if you had spent weeks planning it
beforehand.

Lisp’s versatility makes this kind of programming a practical alternative.
Indeed, the greatest danger of Lisp is that it may spoil you. Once you’ve used
Lisp for a while, you may become so sensitive to the fit between language and
application that you won’t be able to go back to another language without always
feeling that it doesn’t give you quite the flexibility you need.

1.2 Programming Bottom-Up

It’s a long-standing principle of programming style that the functional elements of
a program should not be too large. If some component of a program grows beyond
the stage where it’s readily comprehensible, it becomes a mass of complexity
which conceals errors as easily as a big city conceals fugitives. Such software
will be hard to read, hard to test, and hard to debug.

In accordance with this principle, a large program must be divided into pieces,
and the larger the program, the more it must be divided. How do you divide
a program? The traditional approach is called top-down design: you say “the
purpose of the program is to do these seven things, so I divide it into seven major
subroutines. The first subroutine has to do these four things, so it in turn will
have four of its own subroutines,” and so on. This process continues until the
whole program has the right level of granularity—each part large enough to do
something substantial, but small enough to be understood as a single unit.

Experienced Lisp programmers divide up their programs differently. As well
as top-down design, they follow a principle which could be called bottom-up
design—changing the language to suit the problem. In Lisp, you don’t just write
your program down toward the language, you also build the language up toward
your program. As you’re writing a program you may think “I wish Lisp had such-
and-such an operator.” So you go and write it. Afterward you realize that using
the new operator would simplify the design of another part of the program, and so
on. Language and program evolve together. Like the border between two warring
states, the boundary between language and program is drawn and redrawn, until
eventually it comes to rest along the mountains and rivers, the natural frontiers
of your problem. In the end your program will look as if the language had been
designed for it. And when language and program fit one another well, you end up
with code which is clear, small, and efficient.



4 THE EXTENSIBLE LANGUAGE

It’s worth emphasizing that bottom-up design doesn’t mean just writing the
same program in a different order. When you work bottom-up, you usually end
up with a different program. Instead of a single, monolithic program, you will get
a larger language with more abstract operators, and a smaller program written in
it. Instead of a lintel, you’ll get an arch.

In typical code, once you abstract out the parts which are merely bookkeeping,
what’s left is much shorter; the higher you build up the language, the less distance
you will have to travel from the top down to it. This brings several advantages:

1. By making the language do more of the work, bottom-up design yields
programs which are smaller and more agile. A shorter program doesn’t
have to be divided into so many components, and fewer components means
programs which are easier to read or modify. Fewer components also
means fewer connections between components, and thus less chance for
errors there. As industrial designers strive to reduce the number of moving
parts in a machine, experienced Lisp programmers use bottom-up design to
reduce the size and complexity of their programs.

2. Bottom-up design promotes code re-use. When you write two or more
programs, many of the utilities you wrote for the first program will also
be useful in the succeeding ones. Once you’ve acquired a large substrate
of utilities, writing a new program can take only a fraction of the effort it
would require if you had to start with raw Lisp.

3. Bottom-up design makes programs easier to read. An instance of this type
of abstraction asks the reader to understand a general-purpose operator; an
instance of functional abstraction asks the reader to understand a special-
purpose subroutine.1

4. Because it causes you always to be on the lookout for patterns in your
code, working bottom-up helps to clarify your ideas about the design of
your program. If two distant components of a program are similar in form,
you’ll be led to notice the similarity and perhaps to redesign the program in
a simpler way.

Bottom-up design is possible to a certain degree in languages other than Lisp.
Whenever you see library functions, bottom-up design is happening. However,
Lisp gives you much broader powers in this department, and augmenting the
language plays a proportionately larger role in Lisp style—so much so that Lisp
is not just a different language, but a whole different way of programming.

1“But no one can read the program without understanding all your new utilities.” To see why such
statements are usually mistaken, see Section 4.8.



1.3 EXTENSIBLE SOFTWARE 5

It’s true that this style of development is better suited to programs which can be
written by small groups. However, at the same time, it extends the limits of what
can be done by a small group. In The Mythical Man-Month, Frederick Brooks ◦
proposed that the productivity of a group of programmers does not grow linearly
with its size. As the size of the group increases, the productivity of individual
programmers goes down. The experience of Lisp programming suggests a more
cheerful way to phrase this law: as the size of the group decreases, the productivity
of individual programmers goes up. A small group wins, relatively speaking,
simply because it’s smaller. When a small group also takes advantage of the
techniques that Lisp makes possible, it can win outright.

1.3 Extensible Software

The Lisp style of programming is one that has grown in importance as software
has grown in complexity. Sophisticated users now demand so much from software
that we can’t possibly anticipate all their needs. They themselves can’t anticipate
all their needs. But if we can’t give them software which does everything they
want right out of the box, we can give them software which is extensible. We
transform our software from a mere program into a programming language, and
advanced users can build upon it the extra features that they need.

Bottom-up design leads naturally to extensible programs. The simplest
bottom-up programs consist of two layers: language and program. Complex
programs may be written as a series of layers, each one acting as a programming
language for the one above. If this philosophy is carried all the way up to the
topmost layer, that layer becomes a programming language for the user. Such
a program, where extensibility permeates every level, is likely to make a much
better programming language than a system which was written as a traditional
black box, and then made extensible as an afterthought.

X Windows and TEX are early examples of programs based on this principle.
In the 1980s better hardware made possible a new generation of programs which
had Lisp as their extension language. The first was Gnu Emacs, the popular
Unix text-editor. Later came Autocad, the first large-scale commercial product to
provide Lisp as an extension language. In 1991 Interleaf released a new version
of its software that not only had Lisp as an extension language, but was largely
implemented in Lisp.

Lisp is an especially good language for writing extensible programs because
it is itself an extensible program. If you write your Lisp programs so as to pass
this extensibility on to the user, you effectively get an extension language for free.
And the difference between extending a Lisp program in Lisp, and doing the same
thing in a traditional language, is like the difference between meeting someone in



6 THE EXTENSIBLE LANGUAGE

person and conversing by letters. In a program which is made extensible simply
by providing access to outside programs, the best we can hope for is two black
boxes communicating with one another through some predefined channel. In
Lisp, extensions can have direct access to the entire underlying program. This is
not to say that you have to give users access to every part of your program—just
that you now have a choice about whether to give them access or not.

When this degree of access is combined with an interactive environment, you
have extensibility at its best. Any program that you might use as a foundation for
extensions of your own is likely to be fairly big—too big, probably, for you to have
a complete mental picture of it. What happens when you’re unsure of something?
If the original program is written in Lisp, you can probe it interactively: you can
inspect its data structures; you can call its functions; you may even be able to look
at the original source code. This kind of feedback allows you to program with
a high degree of confidence—to write more ambitious extensions, and to write
them faster. An interactive environment always makes programming easier, but it
is nowhere more valuable than when one is writing extensions.

An extensible program is a double-edged sword, but recent experience has
shown that users prefer a double-edged sword to a blunt one. Extensible programs
seem to prevail, whatever their inherent dangers.

1.4 Extending Lisp

There are two ways to add new operators to Lisp: functions and macros. In Lisp,
functions you define have the same status as the built-in ones. If you want a new
variant of mapcar, you can define one yourself and use it just as you would use
mapcar. For example, if you want a list of the values returned by some function
when it is applied to all the integers from 1 to 10, you could create a new list and
pass it to mapcar:

(mapcar fn
(do* ((x 1 (1+ x))

(result (list x) (push x result)))
((= x 10) (nreverse result))))

but this approach is both ugly and inefficient. 2 Instead you could define a new
mapping function map1-n (see page 54), and then call it as follows:

(map1-n fn 10)

2You could write this more elegantly with the new Common Lisp series macros, but that only
proves the same point, because these macros are an extension to Lisp themselves.



1.4 EXTENDING LISP 7

Defining functions is comparatively straightforward. Macros provide a more
general, but less well-understood, means of defining new operators. Macros are
programs that write programs. This statement has far-reaching implications, and
exploring them is one of the main purposes of this book.

The thoughtful use of macros leads to programs which are marvels of clarity
and elegance. These gems are not to be had for nothing. Eventually macros will
seem the most natural thing in the world, but they can be hard to understand at first.
Partly this is because they are more general than functions, so there is more to keep
in mind when writing them. But the main reason macros are hard to understand
is that they’re foreign. No other language has anything like Lisp macros. Thus
learning about macros may entail unlearning preconceptions inadvertently picked
up from other languages. Foremost among these is the notion of a program as
something afflicted by rigor mortis. Why should data structures be fluid and
changeable, but programs not? In Lisp, programs are data, but the implications
of this fact take a while to sink in.

If it takes some time to get used to macros, it is well worth the effort. Even in
such mundane uses as iteration, macros can make programs significantly smaller
and cleaner. Suppose a program must iterate over some body of code for x from
a to b. The built-in Lisp do is meant for more general cases. For simple iteration
it does not yield the most readable code:

(do ((x a (+ 1 x)))
((> x b))

(print x))

Instead, suppose we could just say:

(for (x a b)
(print x))

Macros make this possible. With six lines of code (see page 154) we can add for
to the language, just as if it had been there from the start. And as later chapters
will show, writing for is only the beginning of what you can do with macros.

You’re not limited to extending Lisp one function or macro at a time. If you
need to, you can build a whole language on top of Lisp, and write your programs
in that. Lisp is an excellent language for writing compilers and interpreters, but
it offers another way of defining a new language which is often more elegant and
certainly much less work: to define the new language as a modification of Lisp.
Then the parts of Lisp which can appear unchanged in the new language (e.g.
arithmetic or I/O) can be used as is, and you only have to implement the parts
which are different (e.g. control structure). A language implemented in this way
is called an embedded language.



8 THE EXTENSIBLE LANGUAGE

Embedded languages are a natural outgrowth of bottom-up programming.
Common Lisp includes several already. The most famous of them, CLOS, is
discussed in the last chapter. But you can define embedded languages of your
own, too. You can have the language which suits your program, even if it ends up
looking quite different from Lisp.

1.5 Why Lisp (or When)

These new possibilities do not stem from a single magic ingredient. In this respect,
Lisp is like an arch. Which of the wedge-shaped stones (voussoirs) is the one
that holds up the arch? The question itself is mistaken; they all do. Like an arch,
Lisp is a collection of interlocking features. We can list some of these features—
dynamic storage allocation and garbage collection, runtime typing, functions as
objects, a built-in parser which generates lists, a compiler which accepts programs
expressed as lists, an interactive environment, and so on—but the power of Lisp
cannot be traced to any single one of them. It is the combination which makes
Lisp programming what it is.

Over the past twenty years, the way people program has changed. Many of
these changes—interactive environments, dynamic linking, even object-oriented
programming—have been piecemeal attempts to give other languages some of
the flexibility of Lisp. The metaphor of the arch suggests how well they have
succeeded.

It is widely known that Lisp and Fortran are the two oldest languages still in
use. What is perhaps more significant is that they represent opposite poles in the
philosophy of language design. Fortran was invented as a step up from assembly
language. Lisp was invented as a language for expressing algorithms. Such
different intentions yielded vastly different languages. Fortran makes life easy for
the compiler writer; Lisp makes life easy for the programmer. Most programming
languages since have fallen somewhere between the two poles. Fortran and Lisp
have themselves moved closer to the center. Fortran now looks more like Algol,
and Lisp has given up some of the wasteful habits of its youth.

The original Fortran and Lisp defined a sort of battlefield. On one side the
battle cry is “Efficiency! (And besides, it would be too hard to implement.)” On
the other side, the battle cry is “Abstraction! (And anyway, this isn’t production
software.)” As the gods determined from afar the outcomes of battles among the
ancient Greeks, the outcome of this battle is being determined by hardware. Every
year, things look better for Lisp. The arguments against Lisp are now starting to
sound very much like the arguments that assembly language programmers gave
against high-level languages in the early 1970s. The question is now becoming
not Why Lisp?, but When?




