Programming Languages
2nd edition
Tucker and Noonan

Chapter 1
Overview

A good programming language is a conceptual
universe for thinking about programming.
A. Perlis

Copyright © 2006 The McGraw-Hill Companies, Inc

Contents

1.1 Principles
1.2 Paradigms
1.3 Special Topics
1.4 A Brief History
1.5 On Language Design
1.5.1 Design Constraints
1.5.2 Outcomes and Goals
1.6 Compilers and Virtual Machines

1.1 Principles

Programming languages have four properties:
— Syntax
— Names
— Types
— Semantics
For any language:
— Its designers must define these properties

— Its programmers must master these properties

Syntax

The syntax of a programming language 1s a precise
description of all its grammatically correct programs.

When studying syntax, we ask questions like:

— What is the grammar for the language?
— What is the basic vocabulary?

— How are syntax errors detected?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Names

Various kinds of entities in a program have names:
variables, types, functions, parameters, classes, objects, ...
Named entities are bound 1n a running program to:
— Scope
— Visibility
— Type
— Lifetime

Types

A type 1s a collection of values and a collection of
operations on those values.

* Simple types
— numbers, characters, booleans, ...
* Structured types
— Strings, lists, trees, hash tables, ...
* A language’ s type system can help to:

— Determine legal operations

— Detect type errors

Copyright © 2006 The McGraw-Hill Companies, Inc.

Semantics

The meaning of a program 1s called its semantics.

In studying semantics, we ask questions like:

When a program is running, what happens to the values of

the variables?
What does each statement mean?

What underlying model governs run-time behavior, such

as function call?

How are objects allocated to memory at run-time?

Copyright © 2006 The McGraw-Hill Companies, Inc.

1.2 Paradigms

A programming paradigm 1s a pattern of problem-
solving thought that underlies a particular genre of
programs and languages.

There are four main programming paradigms:

— Imperative
— Object-oriented
— Functional

— Logic (declarative)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Imperative Paradigm

Follows the classic von Neumann-Eckert model:
— Program and data are indistinguishable in memory
— Program = a sequence of commands
— State = values of all variables when program runs
— Large programs use procedural abstraction
Example imperative languages:
— Cobol, Fortran, C, Ada, Perl, ...

Copyright © 2006 The McGraw-Hill Companies, Inc.

The von Neumann-Eckert Model

Control Arithmetic/Logic

Input Output

> Program —>

Variables

Memory

Figure 1.1: The von Neumann-Eckert Computer Model

Object-oriented (OO) Paradigm

An OO Program 1s a collection of objects that interact by
passing messages that transform the state.

When studying OO, we learn about:
— Sending Messages
— Inheritance
— Polymorphism
Example OO languages:
Smalltalk, Java, C++, C# and Python

Copyright © 2006 The McGraw-Hill Companies, Inc

Functional Paradigm

Functional programming models a computation as a
collection of mathematical functions.

— Input = domain
— Qutput = range
Functional languages are characterized by:

— Functional composition

— Recursion
Example functional languages:
— Lisp, Scheme, ML, Haskell, ...

Copyright © 2006 The McGraw-Hill Companies, Inc.

Logic Paradigm

Logic programming declares what outcome the
program should accomplish, rather than how it

should be accomplished.
When studying logic programming we see:
— Programs as sets of constraints on a problem

— Programs that achieve all possible solutions

— Programs that are nondeterministic
Example logic programming languages:
— Prolog

Copyright © 2006 The McGraw-Hill Companies, Inc

1.3 Special Topics

« Event handling

— FE.g., GUIs, home security systems
* Concurrency

— E.g., Client-server programs
* (orrectness

— How can we prove that a program does what it is
supposed to do under all circumstances?

— Why is this important???

MO Ty [TUN T Copyright © 2006 The McGraw-Hill Companies, Inc N iaawi——

1.4 A Brief History

How and when did programming languages evolve?
What communities have developed and used them?
— Artificial Intelligence
— Computer Science Education
— Science and Engineering
— Information Systems

— Systems and Networks
— World Wide Web

Copyright © 2006 The McGraw-Hill Companies, Inc

1955 60 65 70 75 80 85 90 95 2000 05
| | | l | | | l I | J

Fortran’ Fortran 66 — == Fortran77 — > Fortran — Fortran — ~ Fortran
: : : 90 97 (HPF). 04

Basic : : = Visual Basic——= VB NET

Cobol: ggbol-§—> %abol—f> Cobol 85 = Cobol 02

. #PLA :
Algol > Algol 68 7 : :
f) \Pasca.l = Ada —=Ada 95— Spark/Ada

: ¥ 83 :
— = - : Concurrent -
IAL : Jovial / Pascal : Eiffel

: : C ML
Simula: = Smalltalk -~ i —
: - P Java_?"' Javas

BCPL= C—————————= C+ - C++ —= C#
: i Standard

. / /§,Python _§_3'Python2.4

Perl — = PHP

Modula 2 —=Modula 3

= CLOS
* Common Lisp :
" Haskell — Haskell
I 98
Miranda :

Iswim — =ML SML—— OCAML

Prolog : = CLP — = Prolog
: : standard
SEQUEL" = SQL92—SQL99

é’ indicates
* "design influence"”

Figure 1.2: A Snapshot of Programming Language History

1.5 On Language Design

Design Constraints
— Computer architecture
— Technical setting
— Standards

— Legacy systems

Design Outcomes and Goals

(" ™
Natural language
- . D
Application area
4 p
Programming language
4 . R
Compiler/interpreter
User interface (IDE)
4 N
Operating system
[Machine language j
. J
> >,
- 2

Figure 1.3: Levels of Abstraction in Computing

LTIy copyright ©2006 The McGraw-Hill Companies, Inc N iSEwi——

What makes a successful language?

Key characteristics:
— Simplicity and readability
— Clarity about binding
— Reliability
— Support
— Abstraction
— Orthogonality
— Efficient implementation

Simplicity and Readability

* Small instruction set

— E.g., Java vs Scheme
e Simple syntax

— E.g., C/C++/Java vs Python
* Benefits:

— FEase of learning

— FEase of programming

Sl

———— —— e e N — e —

Clarity about Binding

A language element 1s bound to a property at the time
that property 1s defined for it.

So a binding 1s the association between an object and
a property of that object

— Examples:

e avariable and its type

a variable and its value
— FEarly binding takes place at compile-time

— Late binding takes place at run time

Copyright © 2006 The McGraw-Hill Companies, Inc

 NUIRRURN g b —— e
Reliability

A language 1s reliable 1if:

— Program behavior is the same on different platforms
 E.g., early versions of Fortran

— Type errors are detected
 E.g., C vs Haskell

— Semantic errors are properly trapped
e E.g.,Cvs(CH+t

— Memory leaks are prevented

e E.g.,CvslJava

Language Support

* Accessible (public domain) compilers/interpreters
* Good texts and tutorials

* Wide community of users

* Integrated with development environments (IDEs)

[INEATITIE | B i Copyright © 2006 The McGraw-Hill Companies, Inc S

Abstraction in Programming

e Data

— Programmer-defined types/classes

— Class libraries
 Procedural

— Programmer-defined functions

— Standard function libraries

Sk

—— e e . — _— —

Orthogonality

A language 1s orthogonal 1f 1ts features are built upon
a small, mutually independent set of primitive
operations.

* Fewer exceptional rules = conceptual simplicity
— E.g., restricting types of arguments to a function

* Tradeoffs with efficiency

Copyright © 2006 The McGraw-Hill Companies, Inc.

Sk

—— e e . — _— — — .

Efficient implementation

 Embedded systems

— Real-time responsiveness (e.g., navigation)

— Failures of early Ada implementations
* Web applications

— Responsiveness to users (e.g., Google search)
* Corporate database applications

— Efficient search and updating
* Al applications

— Modeling human behaviors

Copyright © 2006 The McGraw-Hill Companies, Inc.

e —

1.6 Compilers and Virtual Machines

Compiler — produces machine code

Interpreter — executes instructions on a virtual
machine

« Example compiled languages:
— Fortran, Cobol, C, C++
« Example interpreted languages:
— Scheme, Haskell, Python
* Hybrid compilation/interpretation

— The Java Virtual Machine (JVM)

Copyright © 2006 The McGraw-Hill Companies, Inc

D I N ——
The Compiling Process

Source
Program
Lexical - Syntactic o Type - Code - Code
Analyzer Analyzer Checker Optimizer Generator
Machine
Code
Y
V

Figure 1.4: The Compile-and-Run Process

The Interpreting Process

Source

Program Abstract
Lexical Syntactic Type Syntax _
Analyzer Analyzer Checker

Figure 1.5: Virtual Machines and Interpreters

Interpreter

|

Computer

Discussion Questions

1. Comment on the following quotation:

It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC, as potential
programmers they are mentally mutilated beyond hope of

regeneration. — E. Dijkstra

2. Give an example statement 1n your favorite language
that 1s particularly unreadable. E.g., what does the C
expression while (*p++ = *g++) mean?

Copyright © 2006 The McGraw-Hill Companies, Inc

