
Copyright © 2006 The McGraw-Hill Companies, Inc.

Programming Languages  
2nd edition  

Tucker and Noonan"

"
Chapter 1"
Overview"
"
A good programming language is a conceptual

universe for thinking about programming. "
" " " " " " " " " " " "A. Perlis"

"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents"

1.1 Principles"
1.2 Paradigms"
1.3 Special Topics"
1.4 A Brief History"
1.5 On Language Design"

"1.5.1 Design Constraints"
"1.5.2 Outcomes and Goals"

1.6 Compilers and Virtual Machines"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Programming languages have four properties:
–  Syntax

–  Names
–  Types

–  Semantics

For any language:
–  Its designers must define these properties

–  Its programmers must master these properties

1.1 Principles"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Syntax"

The syntax of a programming language is a precise
description of all its grammatically correct programs.

When studying syntax, we ask questions like:
–  What is the grammar for the language?

–  What is the basic vocabulary?

–  How are syntax errors detected?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Names"
Various kinds of entities in a program have names:

 variables, types, functions, parameters, classes, objects, …

Named entities are bound in a running program to:
–  Scope

–  Visibility

–  Type
–  Lifetime

Copyright © 2006 The McGraw-Hill Companies, Inc.

Types"

A type is a collection of values and a collection of
operations on those values.

•  Simple types
–  numbers, characters, booleans, …

•  Structured types
–  Strings, lists, trees, hash tables, …

•  A language’s type system can help to:
–  Determine legal operations

–  Detect type errors

Copyright © 2006 The McGraw-Hill Companies, Inc.

Semantics"
The meaning of a program is called its semantics.
In studying semantics, we ask questions like:

–  When a program is running, what happens to the values of
the variables?

–  What does each statement mean?

–  What underlying model governs run-time behavior, such
as function call?

–  How are objects allocated to memory at run-time?

Copyright © 2006 The McGraw-Hill Companies, Inc.

A programming paradigm is a pattern of problem-
solving thought that underlies a particular genre of
programs and languages.

There are four main programming paradigms:
–  Imperative

–  Object-oriented
–  Functional

–  Logic (declarative)

1.2 Paradigms"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Imperative Paradigm"

Follows the classic von Neumann-Eckert model:
–  Program and data are indistinguishable in memory

–  Program = a sequence of commands
–  State = values of all variables when program runs

–  Large programs use procedural abstraction

Example imperative languages:
–  Cobol, Fortran, C, Ada, Perl, …

Copyright © 2006 The McGraw-Hill Companies, Inc.

The von Neumann-Eckert Model"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Object-oriented (OO) Paradigm"

An OO Program is a collection of objects that interact by
passing messages that transform the state.

When studying OO, we learn about:
–  Sending Messages

–  Inheritance

–  Polymorphism

Example OO languages:

 Smalltalk, Java, C++, C#, and Python

Copyright © 2006 The McGraw-Hill Companies, Inc.

Functional Paradigm"
Functional programming models a computation as a

collection of mathematical functions.
–  Input = domain
–  Output = range

Functional languages are characterized by:
–  Functional composition
–  Recursion

Example functional languages:
–  Lisp, Scheme, ML, Haskell, …

Copyright © 2006 The McGraw-Hill Companies, Inc.

Logic Paradigm"
Logic programming declares what outcome the

program should accomplish, rather than how it
should be accomplished.

When studying logic programming we see:
–  Programs as sets of constraints on a problem

–  Programs that achieve all possible solutions
–  Programs that are nondeterministic

Example logic programming languages:
–  Prolog

Copyright © 2006 The McGraw-Hill Companies, Inc.

•  Event handling
–  E.g., GUIs, home security systems

•  Concurrency
–  E.g., Client-server programs

•  Correctness
–  How can we prove that a program does what it is

supposed to do under all circumstances?

–  Why is this important???

1.3 Special Topics"

Copyright © 2006 The McGraw-Hill Companies, Inc.

How and when did programming languages evolve?
What communities have developed and used them?

–  Artificial Intelligence
–  Computer Science Education

–  Science and Engineering

–  Information Systems
–  Systems and Networks

–  World Wide Web

1.4 A Brief History"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Design Constraints
–  Computer architecture

–  Technical setting
–  Standards

–  Legacy systems

Design Outcomes and Goals

1.5 On Language Design"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

What makes a successful language?"

Key characteristics:
–  Simplicity and readability

–  Clarity about binding
–  Reliability

–  Support

–  Abstraction
–  Orthogonality

–  Efficient implementation

Copyright © 2006 The McGraw-Hill Companies, Inc.

Simplicity and Readability"

•  Small instruction set
–  E.g., Java vs Scheme

•  Simple syntax
–  E.g., C/C++/Java vs Python

•  Benefits:
–  Ease of learning
–  Ease of programming

Copyright © 2006 The McGraw-Hill Companies, Inc.

A language element is bound to a property at the time
that property is defined for it.

So a binding is the association between an object and
a property of that object
–  Examples:

•  a variable and its type

•  a variable and its value

–  Early binding takes place at compile-time

–  Late binding takes place at run time

Clarity about Binding"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Reliability"

A language is reliable if:
–  Program behavior is the same on different platforms

•  E.g., early versions of Fortran

–  Type errors are detected
•  E.g., C vs Haskell

–  Semantic errors are properly trapped
•  E.g., C vs C++

–  Memory leaks are prevented
•  E.g., C vs Java

Copyright © 2006 The McGraw-Hill Companies, Inc.

Language Support"

•  Accessible (public domain) compilers/interpreters
•  Good texts and tutorials

•  Wide community of users
•  Integrated with development environments (IDEs)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstraction in Programming"

•  Data
–  Programmer-defined types/classes

–  Class libraries

•  Procedural
–  Programmer-defined functions

–  Standard function libraries

Copyright © 2006 The McGraw-Hill Companies, Inc.

Orthogonality 
"A language is orthogonal if its features are built upon

a small, mutually independent set of primitive
operations.

•  Fewer exceptional rules = conceptual simplicity
–  E.g., restricting types of arguments to a function

•  Tradeoffs with efficiency

Copyright © 2006 The McGraw-Hill Companies, Inc.

Efficient implementation  
"•  Embedded systems

–  Real-time responsiveness (e.g., navigation)

–  Failures of early Ada implementations

•  Web applications
–  Responsiveness to users (e.g., Google search)

•  Corporate database applications
–  Efficient search and updating

•  AI applications
–  Modeling human behaviors

Copyright © 2006 The McGraw-Hill Companies, Inc.

Compiler – produces machine code
Interpreter – executes instructions on a virtual

machine
•  Example compiled languages:

–  Fortran, Cobol, C, C++

•  Example interpreted languages:
–  Scheme, Haskell, Python

•  Hybrid compilation/interpretation
–  The Java Virtual Machine (JVM)

1.6 Compilers and Virtual Machines"

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Compiling Process"

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Interpreting Process"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Discussion Questions"

1.  Comment on the following quotation:
 It is practically impossible to teach good programming to

students that have had a prior exposure to BASIC; as potential
programmers they are mentally mutilated beyond hope of
regeneration. – E. Dijkstra

2. Give an example statement in your favorite language
that is particularly unreadable. E.g., what does the C
expression while (*p++ = *q++) mean?

