
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1 CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 2

Finite Automata (FA)
•  FA also called Finite State Machine (FSM)

– Abstract model of a computing entity.
– Decides whether to accept or reject a string.
– Every regular expression can be represented as a FA and vice

versa
•  Two types of FAs:

– Non-deterministic (NFA): Has more than one alternative action
for the same input symbol.

– Deterministic (DFA): Has at most one action for a given input
symbol.

•  Example: how do we write a program to recognize the Java
keyword “int”?

q0 q3 t q2 q1 i n

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 3

RE and Finite State Automaton (FA)
•  Regular expressions are a declarative way to describe the tokens

–  Describes what is a token, but not how to recognize the token

•  FAs are used to describe how the token is recognized
–  FAs are easy to simulate in a programs

•  There is a 1-1 correspondence between FAs & regular expressions
–  A scanner generator (e.g., lex) bridges the gap between regular expressions

and FAs.

Scanner generator

Finite
automaton Regular

expression
scanner
program

String stream

Tokens

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 4

Inside scanner generator
Main components of scanner
generation (e.g., Lex)
– Convert a regular expression to

a non-deterministic finite
automaton (NFA)

– Convert the NFA to a
determinstic finite automaton
(DFA)

–  Improve the DFA to minimize
the number of states

– Generate a program in C or
some other language to
“simulate” the DFA

RE

NFA

DFA

Minimized DFA

Program

Thompson construction

Subset construction

DFA simulation Scanner
generator

Minimization

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5

Non-deterministic Finite Automata (FA)

•  NFA (Non-deterministic Finite Automaton) is a 5-tuple
(S, Σ, δ, S0, F):

–  S: a set of states;
–  Σ: the symbols of the input alphabet;
–  δ : a set of transition functions;

»  move(state, symbol) a set of states
–  S0: s0 ∈S, the start state;
–  F: F ⊆ S, a set of final or accepting states.

•  Non-deterministic -- a state and symbol pair can be
mapped to a set of states.

•  Finite—the number of states is finite.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 6

Transition Diagram
•  FA can be represented using transition diagram.
•  Corresponding to FA definition, a transition diagram has:

–  States represented by circles;
–  An Alphabet (Σ) represented by labels on edges;
–  Transitions represented by labeled directed edges between states. The

label is the input symbol;
–  One Start State shown as having an arrow head;
–  One or more Final State(s) represented by double circles.

•  Example transition diagram to recognize (a|b)*abb

q0 q3
b q2 q1 b a

a

b

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 7

Simple examples of FA

a

a*

a+

(a|b)*

start

a

0

start

a

1
a 0

start

a

0

b

start

 a, b

0

start
1

a 0

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 8

Procedures of defining a DFA/NFA
•  Defining input alphabet and initial state
•  Draw the transition diagram
•  Check

–  Do all states have out-going arcs labeled with all the input
symbols (DFA)

–  Any missing final states?
–  Any duplicate states?
–  Can all strings in the language can be accepted?
–  Are any strings not in the language accepted?

•  Naming all the states
•  Defining (S, Σ, δ, q0, F)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

Example of constructing a FA

•  Construct a DFA that accepts a language L over the
alphabet {0, 1} such that L is the set of all strings with
any number of “0”s followed by any number of “1”s.

•  Regular expression: 0*1*
•  Σ = {0, 1}
•  Draw initial state of the transition diagram

Start

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

Example of constructing a FA

•  Draft the transition diagram

Start 1

0 1

0

Start 1

0 1

0

1

•  Is “111” accepted?
•  The leftmost state has missed an arc with input “1”

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

Example of constructing a FA

•  Is “00” accepted?
•  The leftmost two states are also final states

–  First state from the left: ε is also accepted
–  Second state from the left:

strings with “0”s only are also accepted

Start 1

0 1

0

1

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12

Example of constructing a FA

•  The leftmost two states are duplicate
–  their arcs point to the same states with the same symbols

Start 1
0 1

•  Check that they are correct
–  All strings in the language can be accepted

»  ε, the empty string, is accepted
»  strings with “0”s / “1”s only are accepted

–  No strings not in language are accepted

•  Naming all the states

Start 1

0 1

q0 q1

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13

How does a FA work
•  NFA definition for (a|b)*abb

–  S = {q0, q1, q2, q3 }
–  Σ = { a, b }
–  Transitions: move(q0,a)={q0, q1}, move(q0,b)={q0},
–  s0 = q0
–  F = { q3 }

•  Transition diagram representation
–  Non-determinism:

»  exiting from one state there are multiple edges labeled with same symbol, or
»  There are epsilon edges.

–  How does FA work? Input: ababb

move(0, a) = 1
move(1, b) = 2
move(2, a) = ? (undefined)

REJECT !

move(0, a) = 0
move(0, b) = 0
move(0, a) = 1
move(1, b) = 2
move(2, b) = 3

ACCEPT !

q0 q3
b q2 q1 b a

a

b

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

FA for (a|b)*abb

– What does it mean that a string is accepted by a FA?
An FA accepts an input string x iff there is a path from start to a
final state, such that the edge labels along this path spell out x;

–  A path for “aabb”: Q0a q0a q1b q2b q3
–  Is “aab” acceptable?

Q0a q0a q1b q2
Q0a q0a q0b q0

» Final state must be reached;
» In general, there could be several paths.

–  Is “aabbb” acceptable?
Q0a q0a q1b q2b q3

» Labels on the path must spell out the entire string.

q0 q3
b q2 q1 b a

a

b

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

Transition table

•  A transition table is a good way to implement a FSA
–  One row for each state, S
–  One column for each symbol, A
–  Entry in cell (S,A) gives set of states can be reached from state S on

input A

•  A Nondeterministic Finite Automaton (NFA) has at least one
cell with more than one state

•  A Deterministic Finite Automaton (DFA) has a singe state in
every cell

STATES
INPUT

a b
>Q0 {q0, q1} q0
Q1 q2
Q2 q3
*Q3

q0 q3
b q2 q1 b a

a

b

(a|b)*abb

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16

DFA (Deterministic Finite Automaton)
•  A special case of NFA where the transition function maps the

pair (state, symbol) to one state.
–  When represented by transition diagram, for each state S and symbol a, there

is at most one edge labeled a leaving S;
–  When represented transition table, each entry in the table is a single state.
–  There are no ε-transition

•  Example: DFA for (a|b)*abb

•  Recall the NFA:

STATES
INPUT

a b
q0 q1 q0
q1 q1 q2
q2 q1 q3
q3 q1 q0

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17

DFA to program
•  NFA is more concise, but not as easy to

implement;
•  In DFA, since transition tables don’t

have any alternative options, DFAs are
easily simulated via an algorithm.

•  Every NFA can be converted to an
equivalent DFA

–  What does equivalent mean?
•  There are general algorithms that can

take a DFA and produce a “minimal”
DFA.

–  Minimal in what sense?
•  There are programs that take a regular

expression and produce a program
based on a minimal DFA to recognize
strings defined by the RE.

•  You can find out more in 451
(automata theory) and/or 431
(Compiler design)

RE

NFA

DFA

Minimized DFA

Program

Thompson construction

Subset construction

DFA simulation
Scanner
generator

Minimization

