Java

GUI building
with the AWT

AWT (Abstract Window Toolkit)

m Present in all Java implementations
m Described in (almost) every Java textbook
m Adequate for many applications
m Uses the controls defined by your OS
m therefore it's “least common denominator”
» Difficult to build an attractive GUI
m import java.awt.*;
import java.awt.event.*;

Swing

m Requires Java 2 or a separate (huge)
download

= More controls, and they are more flexible
m Gives a choice of “look and feel” packages
m Much easier to build an attractive GUI

m import javax.swing.*;

Swing vs. AWT

= Swing is bigger and slower

= Swing is more flexible and better looking

m Swing and AWT are /ncompatible -- you
can use either, but you can’'t mix them
= Actually, you can, but it's tricky and not worth

doing

m Learning the AWT is a good start on
learning Swing

m AWT: Button b = new Button ("OK");
Swing: JButton b = new JButton("OK");

To build a GUI...

m Make somewhere to display things -- a
Frame, a Window, or an Applet

» Create some Components, such as
buttons, text areas, panels, etc.

= Add your Components to your display area

m Arrange, or /ay out, your Components

m Attach Listeners to your Components
= Interacting with a Component causes an
Event to occur

m A Listener gets a message when an interesting
event occurs & executes code to deal with it

Containers and Components

m The job of a Container is to hold and
display Components

= Some common subclasses of Component
are Button, Checkbox, Label, Scrollbar,
TextField, and TextArea

m A Container is also a Component

m Some Container subclasses are Panel (and
Applet), Window, and Frame

An Applet is Panel is a Container

java.lang.Object

+----java.awt.Component

+----java.awt.Container

+----java.awt.Panel

I
+--—-java.applet.Applet

...S0 you can display things in an Applet

Example: A "Life" applet

Applet

Container (Applet)

™~ Containers (Panels)

/

/ Component (Canvas)

Components (Buttons)

Components (TextFields)

Components (Labels)

Applet started,

Applets

= An application has a
public static void main(String args|])
method, but an Applet usually does not
= An Applet's main method is in the Browser
m To write an Applet, you extend Applet and
override some of its methods

» The most important methods are init(),
start(), and paint(Graphics g)

To create an applet

m public class MyApplet extends Applet { ... }
= this is the on/y way to make an Applet

= You can add components to the applet

m The best place to add components is in
init()

= You can paint directly on the applet, but...

m ..it's better to paint on a contained
component

= Do all painting from paint(Graphics g)

Some types of components

Label |t Button ! | Checkbox |

—

LEt's use cornpohnents! Click me! | _I%8ingle Checkbox

) lapanese
TextField List f : : [Textarea
iTexthrea b —
i il One
i i TextFi T
Button his iz a TextFie Twr%e

Rﬂge things

(®\Morth JSouth JEast Wwest

N
Checkbox CheckboxGroup

fpplet started.

- Enalish & _J| Scrollbar
Choice LM 'Chinese ’] [

Creating components

Label lab = new Label ("Hi!");
Button but = new Button ("Click mel!");
Checkbox toggle = new Checkbox
("toggle”);
TextField txt =

new TextField ("Initial text.", 20);

Scrollbar scrolly = new Scrollbar
(Scrollbar.HORIZONTAL, initialValue,
bubbleSize, minValue, maxValue);

Adding components to the Applet

class MyApplet extends Applet {
public void init () {
add (lab); // same as this.add(lab)
add (but);
add (toggle);
add (txt);
add (scrolly);

Arranging components

m Every Container has a layout manager

m The default layout for a Panel is
FlowLayout

m An Applet is a Panel

m Therefore, the default layout for a Applet
is FlowLayout

= You could set it explicitly with
setLayout (new FlowLayout());

= You could change it to another layout
manager

FlowLayout

m Use add(component); to add to a
component when using a FlowLayout

m Components are added left-to-right
» If no room, a new row is started
m Exact layout depends on size of Applet

m Components are made as small as
possible

» FlowLayout is convenient but often ugly

Complete example: FlowLayout

import java.awt.*;
import java.applet.*;

public class FlowLayoutExample extends Applet {

public void init () {

I/ default Applet |

setLayout (new FlowLayout ());
add (new Button ("One")); One| TWO| Threel
add (new Button ("Two")); _Four | Five| Six|
add (new Button ("Three"));
add (new Button ("Four"));
add (new Button ("Five"));
add (new Button ("Six"));

} applet started.

B d L t BO rde rLayo ut With plel Viewer: Trivialapp... =] B3
- BorderlLayou five Buttons
m At most five &3 Applet Viewer: Trivialapp... =] E3 WEST CENTER EAST
components R
NORTH
can be added 5OUTH
H H Nt Applet started
= If you want more weeT S et public void init() { :
components, add setLayout (new BorderLayout ());
add (BorderLayout.NORTH, new Button ("NORTH"));
a Panel, then a‘?'d SO add (BorderLayout.SOUTH, new Button ("SOUTH"));
components to It. Applet started. add (BorderLayout.EAST, new Button ("EAST"));
» setLayout (new BorderLayout()); add (BorderLayout.WEST, new Button ("WEST"));
add (BorderLayout.CENTER,new Button("CENTER"));
add (BorderLayout.NORTH, new Button("NORTH")); }
Eg’i.ﬁpplet Viewer: Trivi... =] E3
- Applet
Complete example: BorderLayout Using a Panel NORTH
import java.awt.*;
import java.applet.*; WEST CEMTER EAST
public class BorderLayoutExample extends Applet { OB |
public void init () { One Button 1 | Button 2 |
setLayout (new BorderLayout());
add(new Button("One"), BorderLayout.NORTH); Applet started.
add(new Button("Two"), BorderLayout.WEST); Tl Tiree || Feor Panel p = new Panel();
add(new Button("Three"), BorderLayout.CENTER); .
add(new Button("Four"), BorderLayout.EAST); add (BorderLayOUt'SOUTH’ p)'
add(new Button('Five"), BorderLayout.SOUTH); , p.add (new Button ("Button 1"));
add(new Button("Six"), BorderLayout.SOUTH); £l ’
} Anplet started, p.add (new Button ("Button 2"));
}

GridLayout

. 2 applet view =]
m The GridLayout Apl

manager divides the

container up into a One | Two | Three
given number of rows

and columns: Four | Five

Anplet started.

new GridLayout(rows, columns)

= All sections of the grid are equally sized and
as large as possible

Complete example: GridLayout

import java.awt.*;

import java.applet.*;

public class GridLayoutExample extends Applet {
public void init () {

setLayout(new GridLayout(2, 3)); -0 x|

add(new Button("One")); Applet

add(new Button("Two"));
add(new Button("Three"));
add(new Button("Four")); one Twa Three
add(new Button("Five")); :
}
} Four Five

Apnlet started.

Making components active

= Most components already appear to do
something--buttons click, text appears

m TO associate an action with a component,
attach a /istenerto it

m Components send events, listeners listen
for events

» Different components may send different
events, and require different listeners

Listeners

m Listeners are interfaces, not classes

= class MyButtonListener implements
ActionListener {

= An interface is a group of methods that
must be supplied

= When you say implements, you are
promising to supply those methods

Writing a Listener

m For a Button, you need an ActionListener

bl.addActionListener
(new MyButtonListener ());

m An ActionListener must have an
actionPerformed(ActionEvent) method

public void actionPerformed(ActionEvent e) {...}

E\%Applel Viewer. .. [Hl[=]

MyButtonListener =

public void init () { Ouch!

bl.addActionListener (new MyButtonListener ());

}

class MyButtonListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
showStatus ("Ouch!");

}
}

Listeners for TextFields

m An ActionListener listens for someone
hitting the Enter key

= An ActionListener requires this method:
public void actionPerformed (ActionEvent e)

= You can use getText() to get the text

m A TextListener listens for any and all keys

m A TextListener requires this method:
public void textValueChanged(TextEvent e)

Example: Mouse CLicks

import java.applet.Applet;
import java.awt.*;

public class ClickReporter extends Applet {
public void init() {
setBackground(Color.yellow);
addMouseListener(new ClickListener());

}
¥

i Java Console M= E

Mouse pressed at (26,22).

Mouse pressed at (65,63).

Mouse presse d st {110,108).
Mouse pressed at (160,137).
Mouse pressed at (210,171).
Mouse presse d st (275,2115.
Mouse pressed at (367,274).
Mouse pressed at (390,325).
Mouse presse d st (426,327,

Mouse Clicks
import java.awt.event.*;
public class ClickListener

extends MouseAdapter { Dot thss
public void mousePressed(MouseEvent event) {

Summary: Standard
AWT Event Listeners

System.out.printin(o — L
"Mouse pressed at (" + Reporting Mouse Clicks ||
event.getX() +
"," +
event.getY() +
"));

}
}] ke dated d vy ot

Adapter Class

Listener (If Any) Registration Method
ActionListener addActionListener
AdjustmentL.istener addAdjustmentListener
ComponentListener ComponentAdapter addComponentL.istener
ContainerListener ContainerAdapter addContainerL.istener
FocusListener FocusAdapter addFocusL.istener
ItemListener addItemListener
KeyListener KeyAdapter addKeyListener
MouseL.istener MouseAdapter addMouseL istener
MouseMotionListener MouseMotionAdapter addMouseMotionL.istener
TextListener addTextListener
WindowL istener WindowAdapter addwindowL istener

Summary I: Building a GUI

m Create a container, such as Frame or
Applet

m Choose a layout manager

m Create more complex layouts by adding
Panels; each Panel can have its own
layout manager

m Create other components and add them to
whichever Panels you like

Summary I1: Building a GUI

m For each active component, look up what
kind of Listeners it can have
m Create (implement) the Listeners

= often there is one Listener for each active
component

» Active components can share the same
Listener

m For each Listener you implement, supply
the methods that it requires

m For Applets, write the necessary HTML

Vocabulary |

AWT — The Abstract Window Toolkit provides
basic graphics tools (tools for putting
information on the screen)

Swing — A much better set of graphics tools

Container — a graphic element that can hold
other graphic elements (and is itself a
Component)

Component — a graphic element (such as a
Button or a TextArea) provided by a graphics
toolkit

Vocabulary 11

m listener — A piece of code that is activated
when a particular kind of event occurs

» layout manager — An object whose job it is
to arrange Components in a Container

