Chapter 4
(b) parsing

Top down vs. bottom up parsing

• The parsing problem is to connect the root node S with the tree leaves, the input
• **Top-down parsers:** starts constructing the parse tree at the top (root) of the parse tree and move down towards the leaves. Easy to implement by hand, but work with restricted grammars. examples:
 - Predictive parsers (e.g., LL(k))
• **Bottom-up parsers:** build the nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handle a larger class of grammars. examples:
 - shift-reduce parser (or LR(k) parsers)
• Both are general techniques that can be made to work for all languages (but not all grammars!).

Parsing

• A grammar describes the strings of tokens that are syntactically legal in a PL
• A recogniser simply accepts or rejects strings.
• A generator produces sentences in the language described by the grammar
• A parser construct a derivation or parse tree for a sentence (if possible)
• Two common types of parsers:
 - bottom-up or data driven
 - top-down or hypothesis driven
• A recursive descent parser is a way to implement a top-down parser that is particularly simple.

Top down vs. bottom up parsing

• Both are general techniques that can be made to work for all languages (but not all grammars!).
• Recall that a given language can be described by several grammars.
• Both of these grammars describe the same language

$$E \rightarrow E + Num \quad E \rightarrow Num + E$$
$$E \rightarrow Num \quad E \rightarrow Num$$

• The first one, with it’s left recursion, causes problems for top down parsers.
• For a given parsing technique, we may have to transform the grammar to work with it.
Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary Context Free Grammar is $O(n^3)$, e.g., it can take time proportional the cube of the number of symbols in the input. This is bad!
- If we constrain the grammar somewhat, we can always parse in linear time. This is good!
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy

Top Down Parsing Methods

- Simplest method is a full-backup recursive descent parser.
- Write recursive recognizers (subroutines) for each grammar rule
 - If rules succeeds perform some action (I.e., build a tree node, emit code, etc.)
 - If rule fails, return failure. Caller may try another choice or fail
 - On failure it “backs up”
- Problems
 - When going forward, the parser consumes tokens from the input, so what happens if we have to back up?
 - Backup is, in general, inefficient
 - Grammar rules which are left-recursive lead to non-termination

Recursive Decent Parsing Example

Example: For the grammar:

$\langle \text{term} \rangle \rightarrow \langle \text{factor} \rangle \ {\{(\ast | /)\langle \text{factor} \rangle\}}$

We could use the following recursive descent parsing subprogram (this one is written in C)

```c
void term() {
    factor();    /* parse first factor*/
    while (next_token == ast_code ||
           next_token == slash_code) {
        lexical();  /* get next token */
        factor();   /* parse next factor */
    }
}
```

Informal recursive descent parsing
Problems

- Some grammars cause problems for top down parsers.
- Top down parsers do not work with left-recursive grammars.
 - E.g., one with a rule like: $E \rightarrow E + T$
 - We can transform a left-recursive grammar into one which is not.
- A top down grammar can limit backtracking if it only has one rule per non-terminal
 - The technique of factoring can be used to eliminate multiple rules for a non-terminal.

Left-recursive grammars

- A grammar is left recursive if it has rules like
 - $X \rightarrow X \beta$
 - Or if it has indirect left recursion, as in
 - $X \rightarrow+ X \beta$
- Why is this a problem?
- Consider
 - $E \rightarrow E + \text{Num}$
 - $E \rightarrow \text{Num}$
- We can manually or automatically rewrite a grammar to remove left-recursion, making it suitable for a top-down parser.

Elimination of Left Recursion

- Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]
- S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion
 \[S \rightarrow \beta \, S' \]
 \[S' \rightarrow \alpha \, S' \mid \epsilon \]

More Elimination of Left-Recursion

- In general
 \[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]
- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$
- Rewrite as
 \[S \rightarrow \beta_1 \, S' \mid \ldots \mid \beta_m \, S' \]
 \[S' \rightarrow \alpha_1 \, S' \mid \ldots \mid \alpha_n \, S' \mid \epsilon \]
General Left Recursion

- The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow^+ S \beta \alpha \]
 where \(\rightarrow^+ \) means “can be rewritten in one or more steps”
- This indirect left-recursion can also be automatically eliminated

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - … but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar, allowing us to successfully predict which rule to use.

Predictive Parser

- A predictive parser uses information from the first terminal symbol of each expression to decide which production to use.
- A predictive parser is also known as an LL(k) parser because it does a Left-to-right parse, a Leftmost-derivation, and k-symbol lookahead.
- A grammar in which it is possible to decide which production to use examining only the first token (as in the previous example) are called LL(1)
- LL(1) grammars are widely used in practice.
 - The syntax of a PL can be adjusted to enable it to be described with an LL(1) grammar.

Predictive Parser

Example: consider the grammar

\[S \rightarrow \text{if } E \text{ then } S \text{ else } S \]
\[S \rightarrow \text{begin } S \text{ end} \]
\[S \rightarrow \text{print } E \]
\[L \rightarrow ; S L \]
\[E \rightarrow \text{num} = \text{num} \]

An \(S \) expression starts either with an IF, BEGIN, or PRINT token, and an \(L \) expression start with an END or a SEMICOLON token, and an \(E \) expression has only one production.
LL(k) and LR(k) parsers

- Two important classes of parsers are called LL(k) parsers and LR(k) parsers.
- The name LL(k) means:
 - L - Left-to-right scanning of the input
 - L - Constructing leftmost derivation
 - k – max number of input symbols needed to select a parser action
- The name LR(k) means:
 - L - Left-to-right scanning of the input
 - R - Constructing rightmost derivation in reverse
 - k – max number of input symbols needed to select a parser action
- So, a LL(1) parser never needs to “look ahead” more than one input token to know what parser production to apply.

Predictive Parsing and Left Factoring

- Consider the grammar
 \[E \rightarrow T + E | T \]
 \[T \rightarrow \text{int} | \text{int} \ast T | (E) \]
- Hard to predict because
 - For T, two productions start with \text{int}
 - For E, it is not clear how to predict which rule to use
- A grammar must be **left-factored** before use for predictive parsing
- Left-factoring involves rewriting the rules so that, if a non-terminal has more than one rule, each begins with a terminal.

Left-Factoring Example

- Consider the grammar
 \[E \rightarrow T + E | T \]
 \[T \rightarrow \text{int} | \text{int} \ast T | (E) \]
- Factor out common prefixes of productions
 \[E \rightarrow T \ X \]
 \[X \rightarrow + \ E | \varepsilon \]
 \[T \rightarrow (E) | \text{int} \ Y \]
 \[Y \rightarrow \ast \ T | \varepsilon \]
Using Parsing Tables

- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S,a]
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Table Example

- Left-factored grammar

 \[
 E \rightarrow TX \\
 X \rightarrow E | \varepsilon \\
 T \rightarrow (E) | \text{int} Y \\
 Y \rightarrow *T | \varepsilon \\
 \]

- The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td>TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+E</td>
<td></td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>*T</td>
<td></td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X, *next] = Y₁...Yₙ
 then stack ← <Y₁...Yₙ rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
until stack == < >
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>int $</td>
<td>ε</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG
- If $A \rightarrow \alpha$, where in the line of A we place α?
- In the column of t where t can start a string derived from α
 - $\alpha \rightarrow * t \beta$
 - We say that $t \in \text{First}(\alpha)$
- In the column of t if α is ϵ and t can follow an A
 - $S \rightarrow \beta A t \delta$
 - We say $t \in \text{Follow}(A)$

Computing First Sets

Definition: $\text{First}(X) = \{ t \mid X \rightarrow^* t \alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}$

Algorithm sketch (see book for details):
1. for all terminals t do $\text{First}(t) \leftarrow \{ t \}$
2. for each production $X \rightarrow \epsilon$ do $\text{First}(X) \leftarrow \{ \epsilon \}$
3. if $X \rightarrow A_1 \ldots A_n \alpha$ and $\epsilon \in \text{First}(A_i), 1 \leq i \leq n$ do
 - add First(α) to First(X)
4. for each $X \rightarrow A_1 \ldots A_n$ s.t. $\epsilon \in \text{First}(A_i), 1 \leq i \leq n$ do
 - add ϵ to First(X)
5. repeat steps 4 & 5 until no First set can be grown

First Sets. Example

- Recall the grammar
 - $E \rightarrow TX$
 - $T \rightarrow (E) \mid \text{int } Y$
 - $X \rightarrow +E \mid \epsilon$
 - $Y \rightarrow *T \mid \epsilon$
- First sets
 - $\text{First}(\) = \{ \}$
 - $\text{First}(T) = \{ \text{int }, \}$
 - $\text{First}(E) = \{ \text{int }, \}$
 - $\text{First}(\text{int}) = \{ \text{int} \}$
 - $\text{First}(X) = \{ +, \epsilon \}$
 - $\text{First}(\ +) = \{ + \}$
 - $\text{First}(\ *) = \{ \ * \}$
Computing Follow Sets

• Definition:
\[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta \ X \ t \ \delta \} \]

• Intuition
 – If S is the start symbol then $ \in \text{Follow}(S)$
 – If $X \rightarrow A \ B$ then First(B) $\subseteq \text{Follow}(A)$ and
 Follow(X) $\subseteq \text{Follow}(B)$
 – Also if $B \rightarrow^* \epsilon$ then Follow(X) $\subseteq \text{Follow}(A)$

Follow Sets. Example

• Recall the grammar
 \[
 \begin{align*}
 &E \rightarrow TX \\
 &T \rightarrow (E) \mid \text{int} \ Y \\
 &X \rightarrow +E \mid \epsilon \\
 &Y \rightarrow *T \mid \epsilon
 \end{align*}
 \]

• Follow sets
 \[
 \begin{align*}
 \text{Follow}(+) &= \{\text{int}, (\} \\
 \text{Follow}(*)&=\{\text{int}, (\} \\
 \text{Follow}(()) &=\{\text{int}, (\} \\
 \text{Follow}(E) &=\{\} \\
 \text{Follow}(X) &=\{\text{int}, (\} \\
 \text{Follow}(T) &=\{+, \} \\
 \text{Follow}(Y) &=\{+, \}
 \end{align*}
 \]

Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G
 • For each production $A \rightarrow \alpha$ in G do:
 – For each terminal $t \in \text{First}(\alpha)$ do
 • $T[A, t] = \alpha$
 – If $\epsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do
 • $T[A, t] = \alpha$
 – If $\epsilon \in \text{First}(\alpha)$ and $S \in \text{Follow}(A)$ do
 • $T[A, S] = \alpha$
Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Algorithm

1. Start with an empty stack and a full input buffer. (The string to be parsed is in the input buffer.)
2. Repeat until the input buffer is empty and the stack contains the start symbol.
 a. Shift zero or more input symbols onto the stack from input buffer until a handle (beta) is found on top of the stack. If no handle is found report syntax error and exit.
 b. Reduce handle to the nonterminal A. (There is a production \(A \rightarrow \beta \))
3. Accept input string and return some representation of the derivation sequence found (e.g., parse tree)
 - The four key operations in bottom-up parsing are shift, reduce, accept and error.
 - Bottom-up parsing is also referred to as shift-reduce parsing.
 - Important thing to note is to know when to shift and when to reduce and to which reduce.

Example of Bottom-up Parsing

<table>
<thead>
<tr>
<th>STACK</th>
<th>INPUT BUFFER</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>num1+num2*num3$</td>
<td>shift</td>
</tr>
<tr>
<td>$num1</td>
<td>+num2*num3$</td>
<td>reduc</td>
</tr>
<tr>
<td>$F</td>
<td>+num2*num3$</td>
<td>reduc</td>
</tr>
<tr>
<td>$T</td>
<td>+num2*num3$</td>
<td>reduc</td>
</tr>
<tr>
<td>$E</td>
<td>+num2*num3$</td>
<td>reduc</td>
</tr>
<tr>
<td>$E*</td>
<td>num2*num3$</td>
<td>shift</td>
</tr>
<tr>
<td>$E*+</td>
<td>*num3$</td>
<td>reduc</td>
</tr>
<tr>
<td>$E*+T</td>
<td>*num3$</td>
<td>shift</td>
</tr>
<tr>
<td>ET</td>
<td>num3$</td>
<td>shift</td>
</tr>
<tr>
<td>ETnum3</td>
<td>$</td>
<td>reduc</td>
</tr>
<tr>
<td>ETF</td>
<td>$</td>
<td>reduc</td>
</tr>
<tr>
<td>E+T</td>
<td>$</td>
<td>reduc</td>
</tr>
<tr>
<td>E</td>
<td>$</td>
<td>accept</td>
</tr>
</tbody>
</table>

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use. They are namely shift and reduce.
 - (In abstract terms, we do a simulation of a Push Down Automata as a finite state automata.)
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol.